Title

探究板塊構造運動的迷思概念與比較多重類比和反駁陳述對促進板塊構造運動迷思概念改變之成效

Translated Titles

The misconceptions of plate tectonics and the comparison of the changing-concept effectiveness between the multiple analogies and the refutational text learning activities

Authors

吳家鶴

Key Words

迷思概念 ; 多重類比 ; 反駁陳述 ; 概念改變 ; misconception ; multiple analogies ; refutational text ; conceptual change

PublicationName

臺灣師範大學科學教育研究所在職進修碩士班學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

碩士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

本研究探討國三學生有關板塊構造運動的迷思概念,並比較以多重類比與反駁陳述進行的教學活動,對促進板塊構造運動迷思概念改變的成效。研究對象為桃園縣某國中三年級學生共六十九人,是首屆完全使用九年一貫教材的學生。 研究的進行是先偵測學生有關板塊構造運動的迷思概念,做為發展概念改變教材的依據,再進行比較不同概念改變教學的成效。研究的對象分為兩組,一組為多重類比組,另一組為反駁陳述組,分別以多重類比教材與反駁陳述教材進行概念改變活動。分析板塊構造運動概念前後測結果,以及晤談與延宕測驗的結果,比較兩組學生的迷思概念改變之成效。 研究結果顯示,學生有關板塊構造運動的主要迷思概念如下:大陸地殼面積會變小、地震搖晃造成岩層斷裂形成斷層、板塊是地殼和軟流圈組成的地球外殼、海洋地殼面積在變大、板塊會受侵蝕沉積等作用改變大小、海岸線是板塊的交界、板塊擠壓使軟流圈岩漿被擠出形成火山。許多學生因分不清地殼、板塊、陸地彼此間的關係,進而衍伸出一些迷思概念,例如把溫室效應造成海水面上升,解讀成大陸地殼變小或海洋地殼變大;或是倚賴直覺的理解,把地震強大的震動能造成房屋倒塌,當作是岩層被震斷產生斷層的原因。 研究結果也顯示,多重類比和反駁陳述兩組在教學活動後,板塊構造運動概念後測得分明顯提升,但比較兩組得分的進步程度,則未達顯著差異。比較兩組的延宕測驗,也得到和上述類似的結果──未達顯著差異。兩組大部分的學生都對概念改變教學活動持相當正面的反應,在多重類比教材使用的類比物中,以巧克力板比喻火山、拼圖和碎報紙比喻大陸漂移、藤條折斷比喻地震,較受歡迎或印象深刻;反駁陳述教材的各部分,學生印象較深的說明有宇宙膨脹(練習教材)、板塊構造、火山形成等。 本研究亦提供了幾點未來研究上、教材設計上與教學上的建議,希望對教師與教材撰寫者有所幫助。

English Abstract

This research identified 9th grade students’ misconceptions of plate tectonics and compared the concept-changed effectiveness of learning activities that used multiple analogies and refutational text respectively. The samples of this study were 69 9th grade students at one school, Taoyuan. Under the reform of curriculum and teaching materials, they were the first year’s graduates. The first step of the research was detecting students’ misconceptions of plate tectonics, as foundations to develop learning materials for changing misconceptions. The second step was comparing the changing-concept effects of the two different learning activities. The subjects were divided into two equal groups approximately; one was named “multiple analogies” group and the other “refutational text” group. Analyzing the data collected from the pretest, interview, posttest, and delayed posttest, it revealed what the misconceptions students held and how the students changed their misconceptions and what difference of changing-concept effects between the two groups was. The result revealed that the students held many misconceptions; the prevalent misconceptions were as follow: the area of continental crust shrinking, earthquake fracturing the strata, tectonic plates comprising crust and asthenosphere, the area of oceanic crust expanding, tectonic plates changing size by erosion or deposit, coastline equaling the edge of tectonic plates, volcanoes spouting out lava from asthenosphere by tectonic plates pushing. Many of the students vaguely considered that crust, tectonic plates, and land are the same things so those misconceptions are formed in the students’ mind. Some examples were as follow: The students considered that sea level rising, by the green house effect, have made the area of continental crust smaller or the area of oceanic crust bigger. Intuitively, the students thought that the earthquake’s vibration fractured strata and formed faults. The result also showed that the scores on the posttest, testing the two groups after the learning activities, were obviously higher than the scores on the pretest but there was no significant difference between the two groups’ increases. Similarly, there was no significant difference between the scores of the two groups’ delay test. Most students of the two groups showed a very positive attitude to the learning activities for conceptual change. Some of the analogs used in the multiple analogies learning activity were impressive, for example: an analogy between the floating chocolate plates and the volcano, an analogy between piecing together a jigsaw or the torn scraps of paper and the continental drift, an analogy between a rattan breaking and an earthquake. The impressive parts of refutational text for the students were the universe expanding (the exercise material), plate tectonics, and the formation of volcanoes. In this study, implications and suggestions for science curriculum, teaching materials, science instruction, and future research topics were also discussed, hoping these would be helpful for teachers and developers of the curriculum.

Topic Category 理學院 > 科學教育研究所在職進修碩士班
社會科學 > 教育學
Reference
  1. 邱美虹 (1998):概念改變研究的省思。論文發表於中華民國第十四屆科學教育學術研討會。高雄市:國立高雄師範大學。
    連結:
  2. 邱美虹 (2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    連結:
  3. 林靜雯 (2000):由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  4. 陳盈吉 (2004):探究動態類比對於科學概念學習與概念改變歷程之研究--以國二學生學習氣體粒子概念為例。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  5. 陳藍萍 (2004):高一學生生物演化概念之研究。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  6. 劉俊庚 (2002):迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  7. 劉嘉茹 (2000):以研究綱領與本體分類論探究概念改變機制之研究。國立台灣師範大學科學教育研究所博士論文。
    連結:
  8. Arnold, M., & Millar, R. (1987). Being constructive: An alternative approach to the teaching of introductory ideas in electricity. International Journal of Science Education, 9(5), 553-563.
    連結:
  9. Ault, C.RJ. (1982). Time in geological explanation as perceived by elementary-school students. Journal of Geological Education, 30, 304-309.
    連結:
  10. Ausubel, D. (1968). Educational Psychology, A Cognitive View. New York: Holt, Rinehart and Winston, Inc.
    連結:
  11. Bar, V., & Travis, A. S. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28(4), 363-382.
    連結:
  12. Bar, V., & Galili, I. (1994). Stages of children’s view about evaporation. International Journal of Science Education, 16(2), 157-174.
    連結:
  13. Bergquist, W., & Heikkinen, H. (1990). Student ideas regarding chemical equilibrium. Journal of Chemical Education, 67(12), 1000-1003.
    連結:
  14. Bliss, J. (1995). Piaget and after: The case of learning science. Studies in Science Education, 25, 139-172.
    連結:
  15. BouJaoude, S. (1991). A study of student’s understandings about the concept of burning. Journal of Research in Science Teaching, 28, 689-704.
    連結:
  16. Brown, D., & Clement, J. (1989). Overcoming misconceptions via analogical reasoning:Abstract transfer versus explanatory model construction. Instructional Science, 18, 237-261.
    連結:
  17. Bruner, J. (1973). Going Beyond the Information Given. New York: Norton.
    連結:
  18. Chi, M. T. H. (1992). Conceptual change in and across ontological categories: Implication for learning and discovery in sciences. In R. Giere (ED.), Cognitive models of sciences: Minnesota studies in philosophy of science, 129-186. Minneapolis: University of Minnesota Press.
    連結:
  19. Chi, M. T. H., Slott, J. D., & de Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    連結:
  20. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
    連結:
  21. Clement, J. (1993). Using Bridging Analogies and Anchoring Intuitions to Deal with Students' Preconceptions in Physics. Journal of Research in Science Teaching, 30(10), 1241-1257.
    連結:
  22. Coleman, S., & Soellner, A. (1995). Scientific literacy and earthquake prediction. Journal of Geological Education, (2), 147-151.
    連結:
  23. Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23, 7, 5–12.
    連結:
  24. Duit, R. (1991). On the role of analogies and metaphor in learning science. Science Education. 75(6), 649-672.
    連結:
  25. Duschl, R.A., & Gitomer, R.J. (1991). Epistemological perspective on conceptual change: Implications for educational practice. Journal of Research in Science Teaching, 28(9), 839-858.
    連結:
  26. Dykstra, D. I., Boyle, C. F., & Monarch, I. A. (1992). Studying conceptual in learning physics. Science Education, 76(6), 615-652.
    連結:
  27. Ferrari, M., & Chi, M. T. H. (1998). The Nature of Naive Explanations of Natural Selection. International Journal of Science Education, 20(10), 1213-1256.
    連結:
  28. Happs, J.C. (1985). Regression on learning outcomes:some examples from the earth sciences. European Journal of Science Education, 7, 431-443.
    連結:
  29. Hashweh, M. Z.(1988). Descriptive studies of students conceptions in science. Journal of Research in Science Teaching, 25(2), 513-529.
    連結:
  30. Hashweh, M. Z.(1986). Toward and explanation of conceptual change. European Journal of Science Education, 8(3), 229-249.
    連結:
  31. Hewson, P. W. & Hewson, M. G. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13.
    連結:
  32. Katharyn, E. K. R., & Thomas J. S. (1993). Children's Beliefs about Earthquakes. Science Education, 77, 2, 191-205.
    連結:
  33. Lewis, E., & Linn, M. (1994). Heat energy and temperature conceptions of adolescents, adults, and experts: Implications for curricular improvements. Journal of Research in Science Teaching, 31(6), 657-677.
    連結:
  34. Marques, L., & Thompson, D. (1997). Misconceptions and Conceptual Changes Concerning Continental Drift and Plate Tectonics among Portuguese Students Aged 16-17. Research in Science and Technological Education, 15, 2, 195-222.
    連結:
  35. Muthukrishna, N., Carnine, D., Grossen, B., & Miller, S. (1993). Children's Alternative Frameworks: Should They Be Directly Addressed in Science Education? Journal of Research in Science Teaching, 30, 3, 233-248 Mar 1993.
    連結:
  36. Nussbaum, J. & Gan, R. (1989). Classroom conceptual change: philosophical  perspectives. International Journal of Science Education, 11, 530-540.
    連結:
  37. Nussbaum, J., & Novick, N. (1982). Alternative frameworks, conceptual conflict, and accommodation: Toward a principled teaching strategy. Instructional Science, 11, 183-200.
    連結:
  38. Osborne, R.J., Bell, B.F., & Gilbert, J.K. (1983). Science teaching and children’s views of the world. European Journal of Science Education, 5, 1-14.
    連結:
  39. Palmer, D., & Flanagan, R. (1997). Readiness to change the conception that “motion-implies-force”: a comparison of 12-year-old and 16-year-old students. Science Education, 81(3), 317-331.
    連結:
  40. Pintrich, P.R., Marx, R.W., & Boyle, R.A.(1993). Beyond conceptual change:The role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Education Research, 63, 176-199.
    連結:
  41. Accommodation of a scientific conception: Toward a theory of conceptual change, Science Education, 66, 211-227.
    連結:
  42. Ross, K. and T. Schuell (1993). Children’s beliefs about earthquakes. Science Education, 77(2), 195-209.
    連結:
  43. Rumelhart, D.E. & Norman, D.A. (1981). Accretion,tuning and restructuring: Three modes of learning. In R. Klatsky & J.W. Cotton (Eds.), Semantic factors in cognition. Hillsdale,NJ: Lawrence Erlbaum Associates.
    連結:
  44. Slott, J.D., Chi, M.T.H. & Joram, E. (1995). Assessing student’ misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, 13(3), 373-400.
    連結:
  45. Solomon, J. (1987). The pupils’ view of electricity revisited: social development or cognitive growth? International Journal of Science Education, 9(1), 13-22.
    連結:
  46. Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts:Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning. Cambridge:Cambridge University Press, 498-531.
    連結:
  47. Strike K. A., & Posner G. J. (1992). A Revisionist Theory of Conceptual Change, in Philosophy of Science, Cognitive Science and Educational Theory and Practice, R. Duschl & R. Hamilton (Editors), Albany: SUNY Press.
    連結:
  48. Tao, P-K., & Gunstone, R. F. (1997). The Process of Conceptual Change in ‘Force and Motion’. The Annual Meeting of the American Educational Research Association. Chicago, IL.
    連結:
  49. Thagard, P. (1992). Conceptual revolutions. Prince, NJ: Princeton University Press.
    連結:
  50. Trumper, R., & Gorsky, P. (1993). Learning about energy: The influence of alternative frameworks, cognitive levels, and closed-mindedness. Journal of Research in Science Teaching, 30(7), 637-648.
    連結:
  51. Tyson, L. M., Venville, G. J., Harrision, A. G., & Treagust, D. F. (1997). A multidimensional framework for interpreting conceptual change events in the classroom. Science Education, 81(4), 387-404.
    連結:
  52. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and Instruction, 4, 45-69.
    連結:
  53. Vosniadou, S. & Brewer, W.F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57, 51-67.
    連結:
  54. Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technological Education, 2, 107-125.
    連結:
  55. 一、中文部分
  56. 邱美虹 (1993):科學教科書與概念改變。科學教育月刊,163,2-8。
  57. 吳育雅 (1995):「合作思考」對高一學生科學知識學習的影響。國立台灣師範大學地球科學研究所碩士論文。
  58. 林振霖 (民82):國中學生的分子概念為基礎的化學反應概念學習與診斷教學的研究。中華民國第九屆科學教育學術研討會,頁147-176。
  59. Richard E. Mayer (1987). Educational Psychology, 林清山(譯)。教育心理學。台北市:遠流出版公司。
  60. 侯依伶 (2003):國三學生板塊構造運動概念學習之心智狀態研究。高雄市:國立高雄師範大學科學教育研究所碩士論文。
  61. 翁雪琴 (1994):探討國三學生對於晝夜及四季成因之心智模式及其概念改變歷程。國立台灣師範大學地球科學研究所碩士論文。
  62. 郭重吉 (1988):從認知觀點探討自然科學的學習。教育學院學報,第十三期,351-378。
  63. 陳政瑜 (1994):由球體透視概念探討學生學習月相成因之困難。國立台灣師範大學地球科學研究所碩士論文。
  64. 陳婉茹 (2004):探討動態類比對於化學平衡概念學習之研究─八年級學生概念本體及心智模式之變化。國立台灣師範大學科學教育研究所碩士論文。
  65. 二、英文部分
  66. Barrow, L., & Haskins, S. (1996). Earthquake Knowledge and Experiences of Introductory Geology Students. Journal of College Science Teaching, 26, 2, 143-146.
  67. Carey. (1985). Conceptual change in childhood. The MIT press, Cambridge, Massachusetts.
  68. Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). Effecting changes in cognitive structures among physics students. In L. West & A. Pines (Eds.), Cognitive Structure and Conceptual Change (pp. 163-188). Orlando, FL: Academic Press.
  69. Cohen, M.R., & Kagan, M.H. (1979). Where does the old moon go? The Science Teacher, 46(8), 22-23.
  70. Cosgrove, M., & Osborne, R. (1985). Lesson frameworks for changing children's ideas. In R. Osborne & F. P. Freyberg (Eds.), Learning in Science: The Implications of Children's Science (pp. 101-111). Portsmouth, NH: Heinemann.
  71. Davis, J. (2001). Conceptual Change. In M. Orey (Ed.), Emerging perspectives on learning, teaching, and technology. Retrieved from http://www.coe.uga.edu/epltt/conceptualchange.htm (Last accessed: 12 June 2005).
  72. Duit, R. (1999). Conceptual change approaches in science education. In W. Schnotz, S. Vosniadou, & M. Carretero (Eds.), New Perspectives on Conceptual Change (pp. 263-282). Oxford: Pergamon.
  73. Dykstra, D. (1991). Studying conceptual change: Constructing new understandings. Research In physics learning: theoretical Issues and empirical studies. Proceedings of an international workshop held at the university of Bremen, March 4-8.
  74. Gentner, D. & Gentner, R.(1983). Flowing waters or teeming crowds:Mental models of electricity. In D. Gentner & A.L. Stevens(Eds.) Mental models. Hillsdale, NJ:Erlbraum. Press.
  75. Glynn, S.; Russell, A.; & Noah, D. (1997). Teaching Science Concepts to Children: The Role of Analogies. Retrieved from http://www.coe.uga.edu/edpsych/faculty/glynn/twa.html (Last accessed: 1 July 2005).
  76. Hewson, P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for conceptual change. In K. G. Tobin & B. J. Fraser (Eds.), International Handbook of Science Education (pp. 199-218). Dordrecht, Netherlands: Kluwer Academic Publishers.
  77. Kearsley, G. (2005). The Theory Into Practice Database. Retrieved from http://tip.psychology.org/index.html (Last accessed: 25 June 2005).
  78. Keith, S. T. (2000). Chemistry lessons for universities: a review of constructivistIdeas. Retrieved from http://www.rsc.org/pdf/uchemed/papers/2000/42_taber.pdf (Last accessed: 12 June 2005).
  79. Klausmeier, H. J.(1974). Conceptual Learning and Development. New York Academic Press.
  80. Lawson, A. (1993). The importance of analogy. Journal of Research in Science Teaching, 30(10), 1213-1214.
  81. Longden, K., Black, P., & Solomon, J. (1991). Children’s interpretation of dissolving. International Journal of Science Education, 13(1), 59-68.
  82. Philips, W. C. (1991). Earth Science Misconceptions. Science Teacher, 58, 2, 21-23.
  83. Pintrich, P.R.(1999). Motivational beliefs as resources fo and constraints on conceptual change. In Schnotz, W., Vosniadou, S. & Carretero, M.(Eds.)New perspectives on conceptual change, 33-50.
  84. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A., (1982).
  85. Tirosh, D., Stavy, R., & Cohen, S. (1998). Cognitive conflict and intuitive rules. International Journal of Science Education, 20(10), 1257-1269.
  86. Von Glasersfeld. E. (1987). Learning as a constructive activity. In C. Javier (Ed.), Problems of representation in the teaching and learning of mathematics (pp.3-17). Hillsdale, NJ: Lawrence Erlbaum Associates.
  87. Vygotsky, L.S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.
  88. Zirbel, E. L. (2004). Framework for Conceptual Change. Retrieved from http://aer.noao.edu/AERArticle.php?issue=5§ion=2&article=6 (Last accessed: 3 July 2005).
Times Cited
  1. 賴韻如(2009)。鷹架式探究課程對學生心智模式和科學解釋之影響:以板塊構造學說為例。臺灣師範大學地球科學系學位論文。2009。1-178。