Title

國中學生氣體壓力概念之教學成效探討

Translated Titles

Exploration of the Instruction Effects of Junior High School Students’ Pressure Concepts

Authors

李武勳

Key Words

氣體 ; 粒子概念 ; 學習環 ; 示範實驗 ; 錯誤概念 ; gas ; particle conception ; learning cycle ; demonstration ; misconception

PublicationName

臺灣師範大學化學系學位論文

Volume or Term/Year and Month of Publication

1999年

Academic Degree Category

碩士

Advisor

黃寶鈿

Content Language

繁體中文

Chinese Abstract

李武勳 國立台灣師範大學化學研究所 中文摘要 氣體粒子概念對國中階段學生而言是一個較困難的概念,且學生具有許多的錯誤概念及想法。本研究的主要目的在診斷國中學生氣體粒子的錯誤概念,並設計氣體粒子相關概念之教學工具,嘗試透過學習環式的教學,以評量教學之成效,並藉由學習興趣暨態度量表之評量,歸納出學生對本教學模式及科學學習之興趣及態度。研究對象為台北縣及宜蘭縣國中階段學生,共計482位。研究工具有氣體粒子相關概念診斷工具、學習環式教學活動設計、概念應用後測工具及學習興趣暨態度量表等。 研究結果發現: 一、 學生在氣體粒子形狀、粒子分佈、粒子重量方面具有相當多的錯誤概念。粒子形狀方面,約50%學生認為氣體粒子形狀會因為外在操作,例如壓力或擠壓、空間大小的改變等而改變其形狀;粒子分佈方面,85%學生並不具有氣體粒子會均勻分佈於密閉容器內的概念,且認為氣體粒子會因為壓力的擠壓或空間的改變等因素而特別集中於某一位置,而非均勻分佈;粒子重量方面,有42%的學生認為氣體粒子沒有重量,且只有30%的學生能指出粒子具有重量,且重量不變。學生認為壓力或擠壓、形狀改變等因素會影響粒子重量是否改變。 二、 研究樣本中,對加壓情況而言,國一至國三學生能指出粒子形狀不變的比例分別為14.5%、34.9%及41.1%;能指出氣體粒子均勻分佈的比例為8.2%、8.1%、12.6%;能指出粒子具有重量且粒子重量不變的學生比例為21.4%、21.5%、34.4%,可見學生對氣體粒子形狀、粒子重量的瞭解有隨年齡而逐漸增加的趨勢。就粒子分佈而言,除國三學生較具有粒子均勻分佈概念外,其他學生則普遍不具有成熟的氣體粒子均勻分佈於密閉容器中的概念。 三、 由學生前後測的答對率比較可以明顯發現,本教學設計對於學生的粒子形狀不變、粒子具有重量且粒子重量不變等概念瞭解,有正面的幫助,但對於氣體壓力概念的瞭解,幫助不大。例如各年級學生對於氣體粒子形狀不變的概念的後測答對率分別為78.3%、80.0%及87.6%;粒子均勻分佈概念的後測答對率則為55.3%、54.3%及73.1%。 四、 學生對本教學模式大多採肯定的態度。對於本教學模式有80%的學生認為很生動、活潑,且覺得「比較不會對理化感到恐懼了」。故對氣體粒子概念的教學而言,本教學模式應可對學生的概念學習有正面的幫助。

English Abstract

Exploration of the Instruction Effects of Junior High School Students’ Pressure Concepts Wu-hsun Lee National Taiwan Normal University Graduate Institute of Chemistry Abstract The particulate concept of gas is a more difficult conceptions for junior high school students, and the students have many misconceptions about it. The purposes of this study were to investigate junior high school students’ misconceptions of gas particles, and design some teaching materials relative to gas particles to evaluate the effects of teaching throughout the teaching model of learning cycle. Based on the learning interests and attitude evaluation, students’ interests and attitude for this teaching model and science learning were marshaled. The subjects were junior high school from Taipei County and I-Lan County students. There were 482 students in total. The instruments used in this study were as follows : (1)diagnostic test of gas particles, (2)teaching activities of learning cycle, (3)diagnostic test of conceptions applications, and (4)the learning interests and attitude scale. The main findings of the study were : (1) Students have many misconceptions about shapes, distribution, and weight of gas particles. 50% students considered that the shapes of gas particles would change owing to external operations, such as pressure or compressing, the change of space. In the aspect of the distributions of gas particles, 85% students didn’t possess the conception that gas would distribute uniformly in a closed container. They thought that gas particles would concentrate in some space as a result of compression or the change of space. In the aspect of the weight of gas particles, 42% students didn’t think that gas has any weight, and only 30% students could understand that gas has weight and the weight will not change. Students were in the opinions that pressure or compression, and the change of the shape of gas particles would affect the weight of the gas particles. (2) For the situation of compressing gases, the percentages of the students from grade 7 to 9 who could point out that the shapes of gas particles will not change were14.5%, 34.9%, and 41.1% respectively. The percentages of the students from grade 7 to 9 who could point out that gas will distribute uniformly were 8.2%, 8.1%, and 12.6% respectively. The percentages of the students from grade 7 to 9 who could point out that gas particles have weight and their weight will not change were 21.4%, 21.5%, and 34.4% respectively. So it is obvious that there was an understanding of the shapes and the weight of gas particles increases as students’ age. For the distribution conceptions, students didn’t have the conception that gas will distribute uniformly in a closed space, except for the students of grade 9. (3) A marked difference obtained from comparing the responses in the pretest and the posttest was that the teaching model could assist students to understand the conceptions of the shapes and the weight of gas particles. But for the conceptions of uniform distribution of gas, it was not that helpful. For instance, the percentages of the correct responses of posttest for the conceptions of gas shape and gas distribution of students from grade 7 to 9 were 78.3%, 80.0%, 87.6%, and 55.3%, 54.3%, 73.1% respectively. (4) Most students assumed a positive attitude toward this teaching model. 80% students considered that the teaching model was vivid and vigorous, and felt that the natural science is no longer difficult. For teaching the concept of gas particles, we think that the teaching model can help students to learn the gas particle concept.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系
Reference
  1. 學術研討會論文彙編。
    連結:
  2. Abraham, M. R., & Renner, J. W.(1986). The sequence of learning cycle activities
    連結:
  3. in high school chemistry. Journal of Research in Science Teaching, 23(2),
    連結:
  4. ? Reflections about the teaching of the particle model. Science &
    連結:
  5. Education, 6, 251-261.
    連結:
  6. 45-48.
    連結:
  7. Barker, V.(1999). Students’ reasoning about chemical reactions : what change
    連結:
  8. Batt, R. H.(1980). A Piagetian learning cycle for introductory chemical
    連結:
  9. Benson, D. L.(1993). Students’ preconceptions of the nature of gases. Journal
    連結:
  10. of Research in Science Teaching, 30(6), 587-597.
    連結:
  11. Knowledge of air : a study of children aged between 6 and 8 years.
    連結:
  12. International Journal of Science Education, 10(2), 179-188.
    連結:
  13. understanding of particulate nature of matter. ( Leeds : Children’s
    連結:
  14. Science and Mathmatics Education. )
    連結:
  15. to promote conceptual change. International Journal of Science Education,
    連結:
  16. 21(12), 1237-1249.
    連結:
  17. of Research in Science Teaching, 32(8), 871-884.
    連結:
  18. Driver, R.(1989). Students’ conceptions and the learning of science.
    連結:
  19. International Journal of Science Education, 11, special issue, 481-490.
    連結:
  20. conception of gases and the history of chemistry. Journal of Chemical
    連結:
  21. relating to fundamental characteristics of atoms and molecules. Journal
    連結:
  22. of Research in Science Teaching, 29(6), 611-628.
    連結:
  23. Herron, J. D.(1978). Piaget in the classroom : guidelines for applications.
    連結:
  24. Journal of Chemical Education, 55(3), 165-170.
    連結:
  25. Johnson, P. (1998a). Progression in children’s understanding of a ‘basic’
    連結:
  26. particle theory : a longitudinal study. International Journal of Science
    連結:
  27. Johnson, P. (1998b). Children’s understanding of changes of state involving the
    連結:
  28. Johnson, P. (1998c). Children’s understanding of changes of state involving the
    連結:
  29. of Science Education, 20(3), 291-303.
    連結:
  30. Longden, K., Black, P., & Solomon, J.(1991). Children’s interpretation of
    連結:
  31. Maskill, R.(1997). Young pupils’ ideas about the microscopic nature of matter
    連結:
  32. students’ understanding of the behavior of gases. Science & Education,
    連結:
  33. pictorial presentation of matter on students’ conceptions and
    連結:
  34. Novick, S., & Nussbaum, J.(1978). Junior high school pupils’ understanding of
    連結:
  35. Novick, S., & Nussbaum, J.(1981). Pupils’ understanding of particulate nature
    連結:
  36. in constructivist and traditional classrooms. International Journal of
    連結:
  37. Schneider, L. S., & Renner, J.(1980). Concrete and formal teaching. Journal of
    連結:
  38. Research in Science Teaching, 17(6), 503-517.
    連結:
  39. Educational Books.
    連結:
  40. Sumfleth, E.(1988). Knowledge of terms and problem-solving in chemistry.
    連結:
  41. Stavy, R.(1988). Children’s conception of gas. International Journal of Science
    連結:
  42. Steiner, R. P.(1980). Encouraging active student participation in the learning
    連結:
  43. Models in Bringing About a Conceptual Change in the Understanding of
    連結:
  44. Science Concepts by Prospective Elementary Teachers. Science Education,
    連結:
  45. Tsai, C. C. (1998). An analysis of Taiwanese eighth graders’ science achievement,
    連結:
  46. 20(4), 413-425.
    連結:
  47. : manipulation of logical structure and of M-demand, and their effect on
    連結:
  48. student performance. Science Education, 82(4), 437-454.
    連結:
  49. Tytler, R. (1998a). The nature of students' informal science conceptions.
    連結:
  50. Tytler, R. (1998b). Children's conceptions of air pressure : exploring the nature
    連結:
  51. of conceptual change. International Journal of Science Education, 20(8),
    連結:
  52. 參考文獻
  53. 中文部分:
  54. 王文科(民87):教育研究法(增訂新版)。台北市:五南圖書出版公司。
  55. 王憲鈿(民85):發生認識論原理。北京:商務印書館。
  56. 朱敬先(民84):教學心理學(增訂三版)。台北市:五南圖書出版公司。
  57. 杜聲鋒(民80):皮亞傑及其思想。台北市:遠流出版公司。
  58. 何寶珠(民79):科學過程技能教學活動對國一學生之影響~科學過程技能成就水準與
  59. 科學態度。國立台灣師範大學化學研究所碩士論文。
  60. 何明昇(民88):國中與國小學生體積概念之診斷與教學。國立台灣師範大學化學研究
  61. 所碩士論文。
  62. 林清山(民81):教育心理學。台北市:遠流出版公司。
  63. 吳永吉(民74):國中學生學科態度成就評量及其影響因子之分析研究。國立台灣師範
  64. 大學物理研究所碩士論文。
  65. 洪振方(民76):學生空氣體積及壓力之粒子模型概念與推理能力之相關研究。國立台
  66. 灣師範大學化學研究所碩士論文。
  67. 國立編譯館(民85):國民小學自然科學第一冊至第十二冊。台北市:台灣書店。
  68. 國立編譯館(民87):國民中學理化第二冊。台北市:台灣書店。
  69. 婁立(民76):國中實施學科能力分組教學學生適應行為之研究。國立台灣師範大學教
  70. 育研究所碩士論文。
  71. 陳麗華(民76):精熟學習模式及其在國小數學科教學上之效果研究。國立台灣師範大
  72. 學教育研究所碩士論文。
  73. 黃湘武、黃寶鈿(民75):學生空氣概念:粒子性質及動力平衡。七十四年度科學教育
  74. 黃寶鈿(民67):我國現行高中化學教材與教法之研究。師大學報,23,161-200。
  75. 黃寶鈿(民74):科學教育評量之趨向。科學教育論叢(二),132-136。
  76. 黃寶鈿(民74):皮亞傑認知論與大一化學的教學。科學教育論叢(二),74-79。
  77. 潘正安(民77):國中學生科學態度之研究。國立台灣師範大學教育研究所碩士論文。
  78. 盧文顥(民81):從粒子模型概念探討學生對於溶液概念之思考模式。國立台灣師範大
  79. 學化學研究所碩士論文。
  80. 英文部分:
  81. 121-143.
  82. Albanese, A., & Vicentini, M.(1997). Why do we believe that an atom is colourless
  83. Ann, M. L., & Laubach, T. A.(1998). Defining density. The Science Teacher, 65(7),
  84. occur during a context-based post-16 chemistry course ? International
  85. Journal of Science Education, 21(6), 645-665.
  86. kinetics. Journal of Chemical Education, 57(9), 634-635.
  87. Borghi, L., De Ambrosis, A., Massara, C. I., Grossi, M. G., & Zoppi, D.(1988).
  88. Brook, A., Briggs, H., & Driver, R. (1984). Aspects of secondary students’
  89. Learning in Science Project, University of Leeds, Center for Studies in
  90. Campbell, B., & Lubben, F.(2000). Learning science through context : helping
  91. pupils make sense of everyday situation. International Journal of Science
  92. Education, 22(3), 239-252.
  93. Case, F. M., & Fraser, D. M.(1999). An investigation into chemical engineering
  94. students’ understanding of the mole and the use of concrete activities
  95. De Berg, K. C. (1995). Student understanding of the volume, mass, and pressure
  96. of air within a sealed syringe in different states of compression. Journal
  97. Dori, Y. F., & Hameiri, M.(1998). The‘Mole Environment’studyware : applying
  98. multidimensional analysis to quantitative chemistry problems.
  99. International Journal of Science Education, 20(3), 317-333.
  100. Eaton, J. F., Anderson, C. W., & Smith, E. L.(1983). When students don’t know
  101. they don’t know. Science and Children, 20(7), 7-9.
  102. Furio, C. J., Perez, J. H., & Harris, H. H.(1987). Parallels between adolescents’
  103. Education, 64(7), 616-618.
  104. Griffiths, A. K., & Preston, K. R.(1992). Grade-12 students’ misconceptions
  105. Ivins, J. E.(1983). What are your labs really teaching ? The Science Teacher,
  106. 50(5), 56-59.
  107. Education, 20(4), 393-412.
  108. gas state, Part 1:Boiling water and the particle theory. International
  109. Journal of Science Education, 20(5), 567-583.
  110. gas state, Part 2:Evaporation and condensation below boiling point.
  111. International Journal of Science Education, 20(6), 695-709.
  112. Kokkotas, P., & Vlachos, I. (1998). Teaching the topic of the particulate nature
  113. of matter in prospective teachers’training courses. International Journal
  114. dissolving. International Journal of Science Education, 13(1), 59-68.
  115. in three different European countries. International Journal of Science
  116. Education, 19(6), 631-645.
  117. Meheut, M.(1997). Designing a learning sequence about a prequantitative kinetic
  118. model of gases : the parts played by questions and by a computer-
  119. simulation. International Journal of Science Education, 19(6), 647-660.
  120. Newton, D. M. (1999). Pressure, Pressure Everywhere. Science and children,
  121. 36(8), 34-37.
  122. Niaz, M.(2000). Gases as idealized lattices : a rational reconstruction of
  123. 9, 279-287.
  124. Noh, T., & Scharmann, L. C.(1997). Instructional influence of a molecular-level
  125. problem-solving ability. Journal of Research in Science Teaching, 34(2),
  126. 199-217.
  127. the particulate nature of matter : an interview study. Science Education,
  128. 62(3), 273-281.
  129. of matter : a cross-age study. Science Education, 65(2), 187-196.
  130. Odom, A. L., & Kelly, P. V. (1998). Making Learning Meaningful. The Science
  131. Teacher, 65(4), 33-37.
  132. Roger, G. C. (1999). Comparison of student learning about diffusion and osmosis
  133. Science Education, 21(6), 687-698.
  134. Shayer, M., & Adey, P.(1981). Towards a science of science teaching : cognitive
  135. development and curriculum demand. London ; Exeter, N. H. : Heinemann
  136. International Journal of Science Education, 10(1), 45-60.
  137. Education, 10(5), 553-560.
  138. process. Journal of Chemical Education, 57(6), 433-434.
  139. Stepan, J., Dyche, S., & Beiswenger, R. (1988). The Effect of Two Instructional
  140. 72(2), 185-195.
  141. scientific epistemological beliefs and cognitive structure outcomes after
  142. learning basic atomic theory. International Journal of Science Education,
  143. Tsaparlis, G., Kousathana, M., & Niaz, M.(1998). Molecular-equilibrium problems
  144. International Journal of Science Education, 20(8), 901-927.
  145. 929-958.
Times Cited
  1. 邱上峰(2001)。以個別化電腦輔助教學探討學生對於氣體粒子概念之學習成效。臺灣師範大學化學系學位論文。2001。1-102。
  2. 黃瑞仁(2001)。以示範實驗式群測與粒子模型模擬教學探討國中學生對於化學變化的相關概念:以氣體之產生為例。臺灣師範大學化學系學位論文。2001。1-114。
  3. 林榮俊(2001)。以示範實驗式群測與模型模擬教學探討國中學生的擴散概念。臺灣師範大學化學系學位論文。2001。1-117。
  4. 邱顯博(2001)。國二、國三學生的擴散作用概念與概念改變之研究。臺灣師範大學科學教育研究所學位論文。2001。1-250。
  5. 楊勝安(2002)。以學習環之教學策略探討國中學生溶液相關概念的學習成效。臺灣師範大學化學系學位論文。2002。1-150。
  6. 黃玉菁(2003)。以紙筆測驗探討高二學生粒子迷思概念。臺灣師範大學化學系學位論文。2003。1-73。
  7. 黃鈺翔(2008)。國中生微觀粒子概念的發展。臺灣師範大學化學系學位論文。2008。1-199。
  8. 李明鴻(2009)。高中生氣體概念的發展。臺灣師範大學化學系學位論文。2009。1-169。