Title

層級貝氏模型應用於信用卡顧客消費行為分析之研究

Translated Titles

A study on the analysis of credit card customer consume behavior through the Hierarchical Bayesian Model

Authors

魏瑞慧

Key Words

層級貝氏模型 ; RFM模型 ; 信用卡 ; 消費間隔時間 ; Hierarchical Bayesian Model ; RFM Model ; Credit card,Interpurchase times

PublicationName

臺北大學統計學系學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

王鴻龍

Content Language

繁體中文

Chinese Abstract

近年來,顧客消費行為的異質性受到普遍的重視,讓行銷人員人必須更深入地瞭解顧客消費的偏好,以達到有效的顧客關係管理外;競爭激烈的信用卡市場讓發卡機構必須透過精準的顧客關係管理,計畫出更多的行銷方案來吸引持卡人刷卡消費。 本研究是結合了層級貝氏模式與Stone提出的RFM模型,將顧客有效地分群。先透過層級貝氏模式,以generalized gamma分配來模擬顧客消費間隔時間,再利用混合層級貝氏模式將顧客分成四種狀態。而RFM模型則可以衡量出顧客過去貢獻的價值,將顧客依其價值分群。本研究將兩種分群結合不僅可以捕捉到顧客異質性的消費行為,還可以將不同狀態與價值的顧客進行市場區隔,讓行銷人員可以針對不同群的顧客採取不同的行銷策略,亦可決定行銷的先後順序。 本研究透過分層抽樣的資料,驗證兩種分群結合的有效性,可以作為信用卡發卡機構全面分析的參考。

English Abstract

Consumers’ consumption behavior is the most important studies in the customer relationship management (CRM). In recent years, the heterogeneous among customers let marketers have to understand deeply. In the other way, the vehement competition in the market let the credit card organizations to design more attractive promotion plans for more the credit card expense. In this study, we combine the Hierarchical Bayesian model (HBM), which is mostly used to estimate the inter-purchase time of customer, and the Stone’s RFM model, which can be use to weight the customer value, to categorize customers efficiently. In the Hierarchical Bayesian model, we uses a generalized gamma distribution for modeling inter-purchase times and then uses the mixture generalized gamma distribution to segment customer into four states. By using the RFM model, we can cluster customers into groups of various customers’ value. The contribution of the study is combing the BHM and RFM model. Not only catches the heterogeneous behavior of customer purchases but also segments the customers for several groups effectively. Good segment let marketers to adopt many diverse marketing plants and different order to promotion. This study used the stratified sampling data and check the efficiency of two classification, may provides some references to the credit card organization.

Topic Category 基礎與應用科學 > 統計
商學院 > 統計學系
Reference
  1. 1.Allenby, G. M. and James L. Ginter (1995), “Using Extremes to Design Products and Segment Markets”, Journal of Marketing Research, vol. 32, pp.392-403.
    連結:
  2. 2.Allenby, G. M. and P. E. Rossi (1999), “Marketing Models of Customer Heterogeneity”, Journal of Economtrics, Vol. 89, pp.57-78.
    連結:
  3. 3.Allenby, G. M., Robert P. Leone and Lichung Jen (1999), “A Dynamic Model of Purchase Timing With Application to Direct Marketing”, Journal of then American Statistical Association, Vol. 94, No. 466, pp.365-374.
    連結:
  4. 4.Anil, Bhatia(1999), Customer Relationship Management, 1st ed. ,toolbox Portal for CRM.
    連結:
  5. 5.Arora, N., G. M. Allenby and J. L. Ginter (1998), “A Hierarchical Bayes Model of Primary and Secondary Demand”, Marketing Science,Vol. 17, pp. 29-44.
    連結:
  6. 6.Bult, J. R. and T. J. Wansbeek (1995), “Optimal selection for direct mail”, Marketing Science, 14, 378–394.
    連結:
  7. 7.Casella, G. and E. I. George (1992), ”Explaining the Gibbs Sampler”, Journal of the American Statistical Association, Vol. 46, pp. 167-174.
    連結:
  8. 8.Gelfand, A. E., and A. F. M. Smith (1990), “Sampling - Based Approach to Calculating Marginal Densities”, Journal of the American Statistical Association,Vol.85, pp.398-409.
    連結:
  9. 14.Kahan, Ron (1998), “Using Database Marketing Techniques to Enhance Your One-to-One Marketing Initatives”, Journal of Consumer Marketing, Vol 15(5), pp.491-493.
    連結:
  10. 15.Kotler, P. (1994), Marketing Management : Analysis, Planning, Implementation, And Control, 8th ed., Prentice Hall, Inc.
    連結:
  11. 17.Lenk, P. J. and A. G. Rao (1990), “New Model From Old : Forecasting Product Adoption By Hierarchical Bayes Procedures”, Marketing Science, 9(1), pp.42-53.
    連結:
  12. 18.Ling, R. and D. C. Yen (2001), “Customer Relationship management Analysis Framework Strategies”, Journal of Computer Information System, pp.82-96.
    連結:
  13. 19.Marcus, Claudio(1998), “A Practical Yet Meaningful Approach to Customer Segmentation”, Journal of Consumer Marketing, Vol.15, pp.494-504.
    連結:
  14. 20.Mathews, H. E. and J. W. Slocum (1969), “Social Class and Commercial Bank Credit Card Usage”, Journal of Marketing, Vol.33, Jan, PP.77-78.
    連結:
  15. 21.Miglautsch, John (2000), “Thoughts on RFM Scoring”, Journal of Database Marketing, 8(1).
    連結:
  16. 22.Rossi, Peter E., Robert E. McColloch and Greg M. Allenby (1996), “The Value of Purchase History Data in Target Marketing”, Marketing Science, Vol. 15, pp.321-240.
    連結:
  17. 23.Rossi, Peter E. and Greg M. Allenby (2003), “Bayesian Statistics and Marketing”, Marketing Science, Vol. 22, pp. 304-328.
    連結:
  18. 26.Sung, H. H. and C. P. Sang (1998), “Application of data mining tools to hotel data mart on the Internet for database marketing.” Expert Systems With Application, 15, pp1-31.
    連結:
  19. 27.Talukdar, D., K. Sudhir and A. Ainslie (2002), “Investigating New Product Diffusion Across Products and Countries”, Marketing Science, Vol. 21, pp.97-116.
    連結:
  20. 28.Wind, Y. (1978), “Issues and Advances in Segmentation Research”, Journal of Marketing Research, Vol. 15, No. 8, pp. 317-337.
    連結:
  21. 29.Woodruff, R.B. (1997), “Customer Value: The Next Source for Competitive Advantage,” Journal of The Academy of Marketing Science, 25, 139-153.
    連結:
  22. 31.Zeithaml, V.A. (1988), “Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence,” Journal of Marketing, 52, 2-22.
    連結:
  23. 1.呂玉敏(2005),應用雙變量層級貝氏模型於顧客價值分析-以購物網站為例,國立台北大學商學研究所,碩士論文。
    連結:
  24. 2.俞振華、蔡佳泓 (2005),“如何利用全國性民調推估地方民意?多層次貝氏定理估計模型與分層加權的應用“,初稿發表於台灣政治學會年會,臺北,政治大學。
    連結:
  25. 4.陳薏棻(2006),應用層級貝式理論於跨商品類別之顧客購買期間預測模型,國立台灣大學商學研究所,碩士論文。
    連結:
  26. 英文部分:
  27. 9.Goodman, J. (1992), “Retail/Database: Leveraging the customer Database to your Competitive Advantage”, Direct Marketing, Garden City, Vol.55, Iss.8, PP.26-28.
  28. 10.Hughes, Arthur M. (1994), Strategic Database Marketing, IL: Probus Publishing Company, Chicago.
  29. 11.Hughes, Arthur M. (1996), “Boosting response with RFM”, Marketing Tools, 5, 4-10.
  30. 12.Jen, Lichung, Chien-Heng Chou, and Greg M. Allenby (2003), “A Bayesian Approach to Modeling Purchase Frequency”, Marketing Letters, Vol.14, Iss.1, pp.5-20.
  31. 13.Jones, T. O. and W. E. Sasser (1995), “Why Satisfied Customers Defect”, Harvard Business Review November-December, Vol. 73, No.6, pp. 88-99.
  32. 16.Kotler, P., and G. Armstrong (1999), Marketing An Introduction, 4th ed., Prentice Hall, Inc.
  33. 24.Stanley, A. B. (2000), Customer Relationship Management(a strategic imperative in the world if e-business).
  34. 25.Stone, Bob (1989), Successful Direct Marketing Methods, 4th ed., NTC Business Books, Lincolnwood.
  35. 30.Wyner, G. A. (1996), “Customer Profitabillity : Linking Behavior to Economics”, Marketing Research, 8(2), 36-38.
  36. 中文部份:
  37. 3.郭建民(2005),顧客關係管理策略面、流程面與資訊科技面之文獻回顧與未來研究展望之研究,國立中山大學資訊管理研究所,碩士論文。
  38. 5. 楊居明(2004),應用層級貝氏理論於各別消費行為預警模式之研究,國立臺北科技大學工業工程與管理研究所,碩士論文。
  39. 6.趙建志(2001),銷售模型中顧客異質性與狀態規劃之研究,國立中正大學數理統計研究所,碩士論文。
  40. 7.蔡佳璋(2003),應用層級貝氏於消費者行為分析-以線上音樂公司為例,國立台北科技大學生產系統工程與管理研究所,碩士論文。
  41. 8.賴耐志(2002),應用資料探勘於市場區隔分析,國立台北科技大學商業自動化與管理研究所,碩士論文。
Times Cited
  1. 黃于真(2013)。運用統計與資料探勘方法進行顧客購買行為分析。長榮大學資訊管理學系(所)學位論文。2013。1-52。 
  2. 陳前堯(2012)。網路銀行會員交易行為分析 – 應用層級貝氏模型建構。臺北大學統計學系學位論文。2012。1-61。
  3. 蕭依瑟(2016)。國內發卡銀行行銷策略對信用卡使用者消費行為之研究。義守大學財務金融學系學位論文。2016。1-129。