Title

以本體論為基之自動化動作指導系統

Translated Titles

A Ontology-based Automated Instruction Generation System

Authors

郭凱文

Key Words

本體論 ; 資訊擷取 ; 案例式推理 ; 拉邦動作分析 ; Laban Movement Analysis ; Effort ; Information Retrieval ; Ontology

PublicationName

臺北大學資訊管理研究所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

方鄒昭聰

Content Language

繁體中文

Chinese Abstract

近年來隨著人民生活水準和身體素質的提高,人口高齡化的現象愈來愈明顯,因此運動防老觀念已普遍被接受。台灣健身、休閒活動的發展水準和品質,能夠反映出全民健身計畫在國內的居民中實施的成效與力度,單車、健身的流行正說明這種樂活養身的觀念引導人民形成一種適應現今社會生活的休閒意識和習慣;另外政府發布的多項重大計畫內容也與運動產業息息相關,加上休閒產業產值毛額在近幾年不斷攀升,皆證明運動休閒產業將在未來將帶動國民休閒活動朝著健康與科學的方向發展。 現代人生活步調快速,往往缺乏足夠時間與體力進行戶外活動,空閒時間通常從事室內體育活動,例如健身器材或影片舞蹈教學,這些運動的輔助器材設計重點多半是注重動作外在「形」的展現,卻沒有內在「質」的成分,導致使用者常會著重在矯正姿勢,卻無法學習到動作的精隨,因此不但沒有辦法達到良好的運動效果,還會造成運動傷害。實際上運動時需考量動作的內在情緒和質地的特徵,相關研究顯示利用人體動作分析,以感測裝置記錄人體運動肢段的路徑,能夠記錄使用者動作的詳細資訊,由這些資料內容進行動作診斷與矯正等協助,可以提供較有效果的指導效果。 本研究將以本體論為基礎,從專家教學文件與LMA 文獻資料,擷取出該運動領域的知識概念內容,讓以往專家難以用文字描述或量化的內隱知識,可以經由文件探勘的分析過程,將知識內容數位化、外顯化,解決以往文字資訊不易被電腦所理解的情況,系統取出文件內部的重要詞彙與指導語文法,建構特定運動產業的本體論,利用本體論呈現運動領域的知識架構與知識內容,提升未來資訊科技在運動產業的應用。本研究的另一目的,在於能夠讓使用者操作運動器材過程中,即時追蹤人體動作的狀態和路徑,並依據人體運動的物理數據,產出對應的指導語修正使用者動作內容,因此研究經由G-Sensor 感測器與前端的人體動作偵測與判斷模組的整合,得到人體動作之相關運動力學相關參數,如速度(Velocity)、加速度(Acceleration)、時間長度(Time Length)等相關資料,判斷動作內容所具備的質地內涵,經由本研究之指導語產出模組,輸出修正使用者動作之教學指導語,協助使用者動作的記錄和改良,本研究目標在於未來的運動或健身器材可以不必透過專家親自指導,讓器材配合電腦自動化判斷動作內容,即可產出運動教學指導語,達成電腦輔助教學的目的。

English Abstract

People that live in now often haven’t enough time and physical strength to exercise out of doors. If they had free time, usually take exercise with the help of home gyms or teaching video in the indoor space. But the most Devices whose design point focus on external “posture” or “shape” of the movement, but there are no internal “quality” or “effort” materials in the movement with the device. Users always take care of correct themselves posture, so they can’t learn about the essence of actions. Due to above-mentioned causes, users would not only not get the good effect that they expected, but also result in some sports injuries. For these reasons, this research developed a text mining model that integrated LMA (Laban Movement Analysis) , Ontology and Case Base Reasoning that retrieve the important knowledge from the instruction document and LMA literatures. In the text mining progress it can transform the abstract phases and terms into digitalization and concretion concept. The research analytic procedures adopted pos (part-of-speech) and statistical method to calculate the importance of the terms and the relation of the terms. Using the relation of the concept formed the domain ontology. It also finds out the grammar based on pos combination of the instruction sentences to build the grammar case base. The main purpose of this research is building an Instruction Knowledge Base and a Grammar Case Base that can help the gym equipments or sports devices interact with the user and automated generate instruction sentences, the experiment results can provide automated knowledge retrieval and build the domain ontology. It can help machine or equipment assisted instruction development.

Topic Category 商學院 > 資訊管理研究所
社會科學 > 管理學
Reference
  1. 1. 方鄒昭聰&楊迪強(2008),運用K-Means 演算法探討人體動作因子之組成-以LMA為基礎,管理創新與新願景研討會研討會。
    連結:
  2. 3. 方鄒昭聰&黃瑋珊(2008),基於拉邦動作分析理論之數位化動作質地診斷模型,健康與管理學術研討會。
    連結:
  3. 6. 許世賢(2008),拉邦動作質地分析與診斷模型建立之研究,國立台北大學資訊管理研究所碩士論文。
    連結:
  4. 7. 陳五洲&黃彥慈(2007),拉邦動作分析論,大專體育 (88),頁 169-175。
    連結:
  5. 9. 陳靜宜&王慶堂&林房儹(2008),我國運動休閒產業產值及發展趨勢研究,生物與休閒事業研究。
    連結:
  6. 11. 楊迪強(2008),運用K-Means 演算法探討人體動作因子之組成-以LMA 為基礎,國立台北大學資訊管理研究所碩士論文。
    連結:
  7. 2. Aha, D. W. (1998), The Omnipresence of Case-Based Reasoning In Science And Application, Knowledge-Based Systems, 11(5), pp.261-273.
    連結:
  8. 3. Barletta, R. (1991), An Introduction to Case-Based Reasoning, AI Expert, 6, pp.43-49.
    連結:
  9. 4. Chandrasekaran, B., Josephson, J.R., and Benjamins, V.R. (1999), What are ontologies, and why do we need them, IEEE Intelligent Systems, 14(1) , pp:20-26.
    連結:
  10. 8. Fensel, D. (2000), Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer-Verlag, Berlin.
    連結:
  11. 11. Gruber, T. R. (1995), Toward principles for the design of ontologies used for knowledge sharing, International Journal of Human-Computer Studies, 43, pp.907-928.
    連結:
  12. 12. Hunt, J. (1997), Case-Based Diagnosis and Repair of Software Faults, Expert Systems,14(1), pp.15-23.
    連結:
  13. 14. Moore, C. L., and Yamamoto, K. (1988), Beyond Words: Movement Observation and Analysis. New York: Gordon and Breach Science Publishers.
    連結:
  14. 17. Owrang, M. M. (1998), Case Discovery in Case-Based Reasoning Systems, Information Systems Management, pp.74-78, Winter.
    連結:
  15. 19. Soo, V. W. , Lee, C. Y., Li, C. C., Chen, S. L., and Chen, C. C. (2003), Automated semantic annotation and retrieval based on sharable ontology and case-based learning technique, Proceedings of the third ACM/IEEE-CS joint conference on Digital libraries, Houston, Texas.
    連結:
  16. 21. Studer, R., Benjaminsm V.R., Fensel, D. (1998), Knowledge Engineering: Principles and methods, UData and Knowledge EngineeringU, 25, pp.161-197.
    連結:
  17. 22. Trevor J.M. Bench-Capon. (2001), The Role of Ontologies in the Verification and Validation of Knowledge Based Systems, International Journal of Intelligent Systems, 16(3).
    連結:
  18. 23. Uschold M. and Grueninger M. (1996), Ontologies: Principles, Methods and Applications, UThe Knowledge Engineering ReviewU, 11(2), pp.93-136.
    連結:
  19. 24. Vollrath,I.,Wilke,W. and Bergmann,R. (1998), Case-based reasoning support for online catalog sales , IEEE Internet Computing online, 2(4), pp.47-54.
    連結:
  20. 中文部分
  21. 2. 方鄒昭聰&郭凱文(2008),應用本體論建構指導語動作分析專家系統,健康與管理學術研討會。
  22. 4. 李金男(2000),應用知網知識庫於國小課本理解之研究,國立成功大學資訊工程研究研究所碩士論文。
  23. 5. 郭啟祥(2000),應用自然語言處理於台灣手語轉語音系統之研究,國立成功大學資訊工程研究所碩士論文。
  24. 8. 陳以理&林蘭綺&吳典松(2004),自然語言處理技術於專利文件分析之應用」第二屆學生計算語言學研討會。
  25. 12. 國立臺北藝術大學舞蹈學院動作創意研究所(2006),人體動作質地分析與肢體情緒數位傳達應用開發計畫—第一年度。
  26. 英文部分
  27. 1. A. Aamodt, E. Plaza (1994), Case-Based Reasoning:Foundational issues , Methodological Variations, and System Approaches, AI Communication, IOS Press, 7(1), pp. 39-59.
  28. 5. Chen, K. H. and Chen, H. H. (1995), A corpus-based approach to text partition, In Proceedings of the Workshop of Recent Advances in National Language Processing, pp. 152-160, Tzigov Chark, Bulgaria.
  29. 6. Chien, L.F.(1999), PAT-Tree-Based Adaptive Keyphrase Extraction for Intelligent Chinese Information Retrieval, Information Processing and Management , 35(4), pp.501-521, Elsevier Science Ltd
  30. 7. Chuang, W. T. and Yang, J. (2000), Extracting sentence segment for text summarization: A machine learning approach. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval , pp.152-159. NY: ACM.
  31. 9. Finkelstein-Landau, M and Morin, E. (1999), Extracting semantic relationships between terms: supervised vs. unsupervised methods, Workshop on Ontologial Engineering on the Global Information Infrastructure.
  32. 10. Fritz, H. G. (1993), Case-Based Reasoning Applying Past Experience to New Problems, Information Systems Management, pp.77-80, Spring.
  33. 13. Michael, C. D., Leo J. O. & Kevin T. S. (2003), The Semantic Web : A Guide to the Future of XML, Web Services, and Knowledge Management, New York: John Wiley & Sons Publishers.
  34. 15. Noy, N.F. and McGuinness, D.L. (2001), Ontology Development 101: A Guide to Creating Your First Ontology, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05.
  35. 16. Ong, T.H. and Chen, H. (1999), Updateable PAT-Tree Approach to Chinese Key Phrase Extraction using Mutual Information: A Linguistic Foundation for Knowledge Management, the Second Asian Digital Libraries Conference.
  36. 18. Schank, R. (Ed.). (1982), Dynamic memory : A theory of learning in computer and people, New York : Cambridge University Press
  37. 20. Soo, V. W., Lee, C. Y., Yeh, C. C., and Chen, C. C. (2002), Using Sharable Ontology to Retrieve Historical Images. Proceedings of ACM/IEEE International Joint Conference on Digital Library, Portland, Oregon, USA.
  38. 25. Wong, K.F. and Li, W.J.(1998), Intelligent Chinese Information Retrieval: Why is it so Difficult?, Proceedings of the First Asia Digital Library Workshop, pp.47-56.
  39. 網際網路資料
  40. 1. Java Developer Network (SDN). Regular Expression, http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html(最後瀏覽日期 2009.06.06)
  41. 2. 中研院(1993).中文詞知識庫小組技術報告-中文詞類分析,http://godel.iis.sinica.edu.tw/CKIP/20corpus.htm (最後瀏覽日期2009.05.15)。
  42. 3. 中央研究院CKIP中文斷詞系統,http://godel.iis.sinica.edu.tw/CKIP/ws/。
  43. 4. 中央研究院中文剖析系統,http://rocling.iis.sinica.edu.tw/CKIP/parser.htm。
  44. 5. 中研院中英雙語知識本體詞網(BOW),http://bow.sinica.edu.tw/。
  45. 6. 東東同義詞詞典,http://www.hkdictionary.net/synonym/index/indextop.htm
  46. 7. 董振東、董強:知網在線,http://www.keenage.com。