透過您的圖書館登入
IP:18.191.108.168
  • 學位論文

非侵入式無線眼壓感測晶片

Non-Intrusive Wireless Intraocular Pressure Sensor Chip

指導教授 : 黃弘一
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文提出一應用於隱型眼鏡的低功耗無線眼壓感測晶片,由於隱型眼鏡(CLS)的先天限制,無法利用電池提供隱型眼鏡必要的電力,所以在監測系統中,需要利用無線傳能技巧提供隱型眼鏡的壓控振盪器電能。而為了達到感測端天線與電路微小化,將射頻的頻率設定在2.4GHz與5.8GHz,且晶片內部電路需簡單、低功耗、晶片面積需符合隱形眼鏡的訂製。在晶片內部電路採用元件較少的整流電路與匹配電路、低壓降穩壓電路以及低功耗環型振盪器來結合微晶片式眼壓電容感測器,達成眼球壓力與振盪頻率之轉換功能。本論文以台積電0.18um 1P6M製程實現兩個版本的晶片,晶片第一版面積為1.48×1.498 mm2、功率消耗為4.83mW,晶片第二版面積為1×1.5 mm2 、功率消耗為1.57mW。

並列摘要


A low-power wireless intraocular pressure sensing chip on the contact lens has an inherent power supply limitation. To provide power to the VCO in the contact lens the monitoring system needs to use wireless energy transfer techniques. The RF signal is set at 2.4GHz and 5.8GHz for output and input frequency, respectively. To meet the contact lens requirement, the internal chip circuitry must be simplified using low power consumption and small chip area components. The rectifier circuit and its matching circuit use smaller components. The low voltage drop regulator circuit and low power ring oscillator combined with the microchip tonometer capacitance sensor help achieve the required eye pressure and oscillation frequency conversion function. In this thesis, TSMC 0.18um 1P6M process is used to manufacture the two versions of the chip. The first version has 1.48 × 1.498 mm2 chip area and 4.83mW power consumption. The second version has 1 × 1.5 mm2 chip area and 1.57mW power consumption.

參考文獻


[23] Pasha, Muhammad Touqir, and Mark Vesterbacka. "Frequency control schemes for single-ended ring oscillators." Circuit Theory and Design (ECCTD), 2011 20th European Conference on. IEEE, 2011.
[1] J. F. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improve voltage multiplier technique,” IEEE J.Solid-State Circuits, vol. SC-11, no. 3, pp. 374-378, Jun. 1976.
[3] U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC With 16.7-uW minimum RF input power,” IEEE J.Solid-State Circuits, vol. 38, no. 10, pp. 1602-1608, Jan. 2003.
microsystem for continuous blood glucose monitoring,” IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 3, pp. 169-180, Jun. 2009.
[5] F. Kocer and M. P. Flynn, “A new transponder architecture with on-chip ADC for long-range telemetry applications,” IEEE J.Solid-State Circuits, vol. 41, no. 5, pp. 557-564, May. 2006.

延伸閱讀