Title

濺鍍法調控二氧化鈦奈米結構形貌及其光觸媒效應

Translated Titles

Nanostructure morphology tuning of TiO2 using sputtering for the application of photocatalysis

DOI

10.6844/NCKU.2013.00061

Authors

林昭安

Key Words

二氧化鈦奈米柱 ; 光觸媒 ; 高效能濺鍍法 ; TiO2 nanorods ; photocatalysis ; combinatorial sputtering

PublicationName

成功大學材料科學及工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

張高碩

Content Language

英文

Chinese Abstract

二氧化鈦因其化學性質、機械性質及光學特性的優越性,成為一個具潛力的光觸媒。二氧化鈦具有較大能隙(3.2 eV),為紫外光波段,故其使用受到了限制。若二氧化鈦能隙能縮減至可見光範圍可以大幅增加其應用性。此外,其表面積也對光觸媒效率有很大的影響,奈米柱的光觸媒是一個可以發展的策略。 在本實驗中,利用反應性濺鍍法直接沉積二氧化鈦奈米柱於基板上。沉積時的工作距離、濺鍍壓力及基板的形貌為主要影響二氧化鈦奈米柱的關鍵。此外,利用氮離子及鉻離子的摻雜來調控二氧化鈦之能隙並以薄膜繞射儀、二次電子顯微鏡、穿透式電子顯微鏡及紫外光-可見光光譜儀來分析其特性。討論奈米結構、氮與鉻離子的摻雜及降解時之環境(pH) 對光降解甲基藍的影響。最後發現摻雜11%氮離子及20%鉻離子在pH=7的環境中其光降解的效率最高。本實驗證明可藉由摻雜它種離子以提升二氧化鈦奈米柱光觸媒的效率。

English Abstract

TiO2 is a promising photocatalyst due to its superior chemical, mechanical, and optical properties. However, the wide band gap ( 3.2 eV) of TiO2 has limited its application in the UV range. Band gap tuning is extremely critical to extend its applications under visible light,. In addition, high aspect ratio morphology tuning, ex. nanorods structure, is another strategy to enhance its photocatalysis. We have tried to grow TiO2 nanorods directly on a substrate by reactive sputtering. We have discussed the key factors to grow the TiO2 nanorod structure by sputtering, including the working distance, working pressure and substrate morphology. Nitrogen and chromium were incorporated into TiO2 nanorods to tune their band gaps. Various characterization tools such as GIXRD, SEM, TEM, and UV-vis were used to study the properties of TiO2 nanorods. Methylene blue (MB), which can be photodegraded, heavily depending on the morphology of TiO2, the amounts of Cr and N dopants, and the chemical environment (pH), was used as the target pollutant for a photodegradation test. We found N doped TiO2 nanorods made by the approach (b) and Cr-gradient doped TiO2 nanorods showed the best photodegraded efficiency at pH = 7. Modification of pristine TiO2 nanorods has been demonstrated an effective approach to enhance their photodegration ability.

Topic Category 工學院 > 材料科學及工程學系
工程學 > 工程學總論
Reference
  1. 1. Linsebigler, A.L., G.Q. Lu, and J.T. Yates, PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS. Chemical Reviews, 1995. 95(3): p. 735-758.
    連結:
  2. 2. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001. 293(5528): p. 269-271.
    連結:
  3. 3. Fujishima, A. and K. Honda, ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature, 1972. 238(5358): p. 37-+.
    連結:
  4. 4. Frank, S.N. and A.J. Bard, HETEROGENEOUS PHOTOCATALYTIC OXIDATION OF CYANIDE AND SULFITE IN AQUEOUS-SOLUTIONS AT SEMICONDUCTOR POWDERS. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    連結:
  5. 6. Oregan, B. and M. Gratzel, A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS. Nature, 1991. 353(6346): p. 737-740.
    連結:
  6. 7. ROGER I. BICKLEY, T.G.-C., L.P. JOHN S. LEE, T AND, and R.J.D. TILLEYD, A Structural Investigation of Titanium Dioxide Photocatalysts. JOURNAL OF SOLID STATE CHEMISTRY, 1991. 92.
    連結:
  7. 8. Wang, R., et al., Light-induced amphiphilic surfaces. Nature, 1997. 388(6641): p. 431-432.
    連結:
  8. 9. Anpo, M., Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure and Applied Chemistry, 2000. 72(9): p. 1787-1792.
    連結:
  9. 10. Zhu, Y.F., et al., Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide. Analytical Chemistry, 2002. 74(1): p. 120-124.
    連結:
  10. 11. Galoppini, E., Linkers for anchoring sensitizers to semiconductor nanoparticles. Coordination Chemistry Reviews, 2004. 248(13-14): p. 1283-1297.
    連結:
  11. 12. Kamat, P.V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C, 2007. 111: p. 26.
    連結:
  12. 14. Diebold, U., The surface science of titanium dioxide. Surface Science Reports, 2003. 48(5-8): p. 53-229.
    連結:
  13. 15. Yi Hu, H.-L.T., C.-L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles.Ceramic Society, 2003. 23: p. 691-696.
    連結:
  14. 16. Banfield, H.Z.a.J.F., Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem., 1998: p. 2073-2076.
    連結:
  15. 17. Gupta, S.M. and M. Tripathi, A review of TiO2 nanoparticles. Chinese Science Bulletin, 2011. 56(16): p. 1639-1657.
    連結:
  16. 18. Mayer, J.T., et al., TITANIUM AND REDUCED TITANIA OVERLAYERS ON TITANIUM DIOXIDE(110). Journal of Electron Spectroscopy and Related Phenomena, 1995. 73(1): p. 1-11.
    連結:
  17. 20. Dulay, M.A.F.a.M.T., Heterogeneous Photocatalysis. Chem. Rev, 1993. 93.
    連結:
  18. 21. Hurum, D.C., et al., Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. Journal of Physical Chemistry B, 2003. 107(19): p. 4545-4549.
    連結:
  19. 22. Serpone, H.A.-E.a.N., Klnetlc Studies In Heterogeneous Photocatalysis. 1. Photocatalytic Degradatlon of Chlorinated Phenols in Aerated Aqueous Solutions over TIO, Supported on a Glass Matrix. J. Phys. Chem. B, 1988.
    連結:
  20. 23. DINGWANG CHEN , A.K.R., PHOTODEGRADATION KINETICS OF 4-NITROPHENOL IN TiO2 SUSPENSION. Wat. Res., 1998. 32: p. 11.
    連結:
  21. 24. Zang, Y. and R. Farnood, Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Applied Catalysis B: Environmental, 2005. 57(4): p. 275-282.
    連結:
  22. 25. Zhao, J.C., et al., PHOTODEGRADATION OF SURFACTANTS .11. ZETA-POTENTIAL MEASUREMENTS IN THE PHOTOCATALYTIC OXIDATION OF SURFACTANTS IN AQUEOUS TIO2 DISPERSIONS. Langmuir, 1993. 9(7): p. 1646-1650.
    連結:
  23. 26. I-Wei Huang , C.-S.H., and Brian Bush, PHOTOCATALYTIC DEGRADATION OF PCBs IN TiO 2 AQUEOUS SUSPENSIONS. Chemosphere, 1996. 32: p. 12.
    連結:
  24. 27. Zhang, F.L., et al., TiO2-assisted photodegradation of dye pollutants - II. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Applied Catalysis B-Environmental, 1998. 15(1-2): p. 147-156.
    連結:
  25. 28. HAY, T.N.O.A.S.O., Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania. Environ. Sci. Technol., 1997. 31.
    連結:
  26. 30. Wojciech L. Suchanek, a.R.E.R., Hydrothermal Synthesis of Advanced Ceramic Powders. Advances in Science and Technology, 2006. 45.
    連結:
  27. 31. Zhe Ding, X.H., Gao Q. Lu, Po-Lock Yue, and Paul F. Greenfield, Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir, 2000. 16: p. 6.
    連結:
  28. 32. Kislyuk, V.V. and O.P. Dimitriev, Nanorods and Nanotubes for Solar Cells. Journal of Nanoscience and Nanotechnology, 2008. 8(1): p. 131-148.
    連結:
  29. 33. Zhibo Zhang, C.-C.W., Rama Zakaria, and Jackie Y. Ying, Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. J. Phys. Chem. B, 1998. 102: p. 10871-10878.
    連結:
  30. 34. Cheng, K.-W., et al., In situ epitaxial growth of TiO[sub 2] on RuO[sub 2] nanorods with reactive sputtering. Applied Physics Letters, 2006. 88(4): p. 043115.
    連結:
  31. 35. Maggie Paulose, K.S., Sorachon Yoriya, Haripriya E. Prakasam,, Oomman K. Varghese,
    連結:
  32. 36. Chen, H.S., et al., Preparation and Characterization of Pure Rutile TiO2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2011.
    連結:
  33. 37. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
    連結:
  34. 38. Zhang, C. and H. He, A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catalysis Today, 2007. 126(3-4): p. 345-350.
    連結:
  35. 39. Choi, W.Y., A. Termin, and M.R. Hoffmann, THE ROLE OF METAL-ION DOPANTS IN QUANTUM-SIZED TIO2 - CORRELATION BETWEEN PHOTOREACTIVITY AND CHARGE-CARRIER RECOMBINATION DYNAMICS. Journal of Physical Chemistry, 1994. 98(51): p. 13669-13679.
    連結:
  36. 41. Chen, S.-Z., et al., Investigation of nitrogen doped TiO2 photocatalytic films prepared by reactive magnetron sputtering. Catalysis Communications, 2004. 5(11): p. 677-680.
    連結:
  37. 42. Marci, G., et al., Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. Journal of Physical Chemistry B, 2001. 105(5): p. 1033-1040.
    連結:
  38. 43. Ghows, N. and M.H. Entezari, Fast and easy synthesis of core-shell nanocrystal (CdS/TiO2) at low temperature by micro-emulsion under ultrasound. Ultrasonics Sonochemistry, 2011. 18(2): p. 629-634.
    連結:
  39. 44. Das, K. and S.K. De, Optical Properties of the Type-II Core-Shell TiO2@CdS Nanorods for Photovoltaic Applications. Journal of Physical Chemistry C, 2009. 113(9): p. 3494-3501.
    連結:
  40. 45. Meng, L.J., T. Ren, and C. Li, The control of the diameter of the nanorods prepared by dc reactive magnetron sputtering and the applications for DSSC. Applied Surface Science, 2010. 256(11): p. 3676-3682.
    連結:
  41. 46. Meng, L.J., et al., Sputtered Highly Ordered TiO2 Nanorod Arrays and Their Applications as the Electrode in Dye-Sensitized Solar Cells. Journal of Nanoscience and Nanotechnology, 2011. 11(2): p. 929-934.
    連結:
  42. 47. Tsai, C.H., et al., Influences of textures in fluorine-doped tin oxide on characteristics of dye-sensitized solar cells. Organic Electronics, 2011. 12(12): p. 2003-2011.
    連結:
  43. 48. Piscopo, A., D. Robert, and J.V. Weber, Influence of pH and chloride anion on the photocatalytic degradation of organic compounds - Part I. Effect on the benzamide and para-hydroxybenzoic acid in TiO2 aqueous solution. Applied Catalysis B-Environmental, 2001. 35(2): p. 117-124.
    連結:
  44. 49. Wang, J., et al., Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts. Journal of the American Chemical Society, 2009. 131(34): p. 12290-12297.
    連結:
  45. 50. Cong, Y., et al., Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982.
    連結:
  46. 51. Kitano, M., et al., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. Journal of Physical Chemistry B, 2006. 110(50): p. 25266-25272.
    連結:
  47. 52. Zhou, S., et al., Preparation and photocatalytic properties of N-doped nano-TiO2/muscovite composites. Applied Surface Science, 2012. 258(16): p. 6136-6141.
    連結:
  48. 53. Jun, T.H., K.S. Lee, and H.S. Song, Hydrophilicity of anatase TiO2/Cr-doped TiO2 thin films with different band gaps. Thin Solid Films, 2012. 520(7): p. 2609-2612.
    連結:
  49. 5. TADASHI MATSUNAGA, R.T., TOSHIAKI NAKAJIMA, NORIYUKI NAKAMURA, and A.T. KOMINE, Continuous-Sterilization System That Uses Photosemiconductor Powders. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1988. 54.
  50. 13. Nakata, K. and A. Fujishima, TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2012. 13(3): p. 169-189.
  51. 19. Mills, A. and S. LeHunte, An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology a-Chemistry, 1997. 108(1): p. 1-35.
  52. 29. Funda SAYILKAN, M.A.I., Hikmet SAYILKAN, and M.A.a.E.A. Yunus ONAL, Characterization of TiO2 Synthesized in Alcohol by a Sol-Gel Process: The Effects of Annealing Temperature and Acid Catalyst. Turk J Chem, 2005. 29.
  53. 40. Wu, S.X., et al., Photocatalytic redox activity of doped nanocrystalline TiO2. Acta Physico-Chimica Sinica, 2004. 20(2): p. 138-143.
Times Cited
  1. 傅淑萍(2011)。卑賤、荒誕與儀式的完成:邱妙津研究。成功大學中國文學系學位論文。2011。1-275。 
  2. 巫珮琪(2015)。書寫欲望與主體實踐:以《邱妙津日記》為中心。清華大學台灣文學研究所學位論文。2015。1-87。 
  3. 黃重銘(2013)。邱妙津《鱷魚手記》之文本研究與視覺表現。樹德科技大學應用設計研究所學位論文。2013。1-107。 
  4. 蕭幼丹(2010)。周芬伶作品中的酷兒書寫。國立臺北教育大學台灣文化研究所學位論文。2010。1-124。 
  5. 傅紀鋼(2010)。後現代視野下的邱妙津 後現代視野下的邱妙津--以《邱妙津日記》為中心的擬象研究。國立臺北教育大學台灣文化研究所學位論文。2010。1-209。 
  6. 李屹(2012)。「同志」的誕生:概念史視角下行為語意朝認同語意之轉型。臺灣大學社會學研究所學位論文。2012。1-166。 
  7. 沈俊翔(2004)。九0年代台灣同志小說中的同志主體研究。成功大學中國文學系學位論文。2004。1-197。
  8. 楊瀅靜(2005)。邊緣、認同與死亡的書寫—邱妙津小說研究。淡江大學中國文學學系碩士班學位論文。2005。1-146。
  9. 吳佩玹(2011)。放逐與與放逐之後:1990以降台灣女同敘事中的空間再現。中央大學中國文學系學位論文。2011。1-229。
  10. 曾秀萍(2011)。台灣小說中同志/跨性別書寫的家國想像(1990-2010)。政治大學中國文學研究所學位論文。2011。1-351。
  11. 陳筑莛(2012)。在真實與虛構之間─從文類角度看邱妙津作品的特殊性。中央大學中國文學系碩士在職專班學位論文。2012。1-162。
  12. 蔡幸儒(2012)。向內凝視的憂鬱和死亡意識--以邱妙津和袁哲生為分析對象。中央大學中國文學系學位論文。2012。1-158。
  13. 林姵楹(2014)。邱妙津作品中愛欲與悲劇之研究。中正大學台灣文學與創意應用研究所學位論文。2014。1-108。
  14. 許珮語(2017)。邱妙津女同志小說中「我」的告白——以《鱷魚手記》及《蒙馬特遺書》為主。淡江大學中國文學學系碩士班學位論文。2017。1-88。