Title

氧化鎳系化學感測器之研製

Translated Titles

Fabrication of Nickel Oxide (NiO) Based Chemical Sensors

DOI

10.6844/NCKU.2013.00087

Authors

謝政諺

Key Words

延伸式閘極離子感測場效電晶體 ; 氧化鎳 ; 酸鹼感測器 ; 吡咯 ; 參考電極微小化 ; 尿素感測器 ; EGFET ; NiO ; pH sensor ; pyrrole ; miniaturized reference electrode ; urea biosensor

PublicationName

成功大學微電子工程研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

劉文超

Content Language

繁體中文

Chinese Abstract

本論文提出以射頻磁控濺鍍法製備氧化鎳感測膜,並結合金屬-氧化物─半導體場效電晶體以形成氧化鎳酸鹼離子延伸式閘極場效電晶體。論文中改變不同製程參數來製作感測元件,而後將感測元件置入不同酸鹼溶液中,並藉由半導體參數分析儀量測元件之電流-電壓特性曲線,以探討不同製程參數下的氧化鎳感測膜之酸鹼質感測特性。實驗結果顯示在功率50 W、工作壓力2 mtorr、沉積時間45分鐘及基板不加溫的濺鍍參數下展現了極佳的酸鹼值感測能力和線性度。此外,關於感測元件之遲滯、時飄現象及耐久性皆有作一系列之分析和探討。 接著,考量到市售參考電極有著體積龐大、價格昂貴及攜帶不易等缺點,有鑑於此,發展參考電極微小化之研究亦刻不容緩。首先以不同條件下電鍍的高分子聚合物聚吡咯作為參考電極薄膜,而參考電極目的為在不同酸鹼緩衝液均能提供穩定的電位。實驗結果顯示在電壓5 V下電鍍10秒的聚吡咯薄膜,經過氫氧化鈉之鹼處理後,可以得到一穩定之參考電極薄膜。 最後,本論文研究以氧化鎳為基材之尿素感測器。利用包埋固定法將尿素酶固定於氧化鎳感測膜上,接著將製備完成的尿素感測元件置於不同濃度之尿素緩衝液中。實驗結果顯示該元件之尿素感測範圍為0.31~80 mg/dl,而正常人體血清所含之尿素濃度為14~31 mg/dl,因此,氧化鎳薄膜極具有開發為尿素感測器之潛力。

English Abstract

In this study, the nickel oxide thin films were fabricated by radio frequency (RF) magnetron sputtering technology to be applied in the ion sensing electrode. Also, the thin film structure is connected with metal-oxide-semiconductor field-effect transistors (MOSFETs) to be the extended-gate field-effect transistors (EGFETs). In the thesis, the best parameters to fabricate nickel oxide are at sputtering power of 50 W, working pressure 0.002 torr, and without the substrate heating for 45 minutes, which has good sensitivity and linearity. In addition, the Hysteresis, drift, and reliability are also investigated. And then, there are many disadvantages of the commercial reference electrode, such as large size, high cost, and non-portable characteristics. Therefore, the development of miniaturized reference electrode is needed. In the thesis, we develop the polypyrrole-based miniaturized reference electrode by electrodepositing method. According to the experimental result, the stable miniaturized reference electrode is obtained by electrodepositing at applied voltage 5 V for 10 seconds and then treating the base solution. Finally, we proposed the NiO-based pH electrode as substrate to develop the urea biosensor by enzyme immobilization. According to the experimental result, the sensing range of urea is from 0.31 mg/dl to 80 mg/dl, which is included the normal human urea concentration from 14~31 mg/dl. Therefore, the NiO-based urea biosensor has large potential to be developed.

Topic Category 電機資訊學院 > 微電子工程研究所
工程學 > 電機工程
Reference
  1. 1. Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode,” Sens. Actuator B, vol. 88, no. 3, pp. 234-238, Feb. 2003.
    連結:
  2. 2. P. Shuk and K.V. Ramanujachary, “New metal-oxide-type pH sensors,” Solid State Ion., vol. 86-88, no. 2, pp. 1115-1120, Jul. 1996.
    連結:
  3. 3. P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, no. 1, pp. 70-71, Jan. 1970.
    連結:
  4. 4. B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor with silicon nitride gate for pH sensing,” INT. J. Electronics, vol. 67, no. 1, pp. 59-63, 1989.
    連結:
  5. 5. K. Chen, G. Li, H. Lu, and L. Chen, “Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET,” Sens. Actuator B, vol. 12, no. 1, pp. 23-27, Mar. 1993.
    連結:
  6. 6. H. Abe, M. Esashi, and T. Matsuo, “ISFETs using inorganic gate thin-films,” IEEE Trans. Electron Devices, vol. 26, no. 12, pp. 1939-1944, Dec. 1979.
    連結:
  7. 7. M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique,” Sens. Actuator B, vol. 35, no. 1-3, pp. 228-233, Sep. 1996.
    連結:
  8. 8. J. C. Chou and J. L Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing,” Sens. Actuator B, vol. 62, no. 2, pp. 81-87, Feb. 2000.
    連結:
  9. 9. J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B, vol. 76, no. 1-3, pp. 624-628, Jun. 2001.
    連結:
  10. 10. S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs,” Sens. Actuators B, vol. 7, no. 1-3, pp. 367-370, Mar. 1992.
    連結:
  11. 11. H. Hara and T. Ohta, "Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor," Sensors and Actuators B: Chemical, vol. 32, no.2, pp. 115-119, 1996.
    連結:
  12. 12. Y. L. Chin, J. C. Chou, Z. C. Lei, T. P. Sun, W. Y. Chung, and S. K. Hsiung, “Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, no.11, pp. 6311-6315, Nov 2001.
    連結:
  13. 13. J. L. Chiang, J. C. Chou, Y. C. Chen, G. S. Liau, and C. C. Cheng, "Drift andv hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, no.8, pp. 4973-4977, Aug 2003.
    連結:
  14. 14. J. L. Chiang, J. C. Chou, and Y. C. Chen, "Study on Light and Temperature Properties of AlN pH-Ion-Sensitive Field-Effect Transistor Devices," Japanese Journal of Applied Physics, vol. 44, no.7A, pp. 4831-4837, 2005.
    連結:
  15. 15. P. D. Batista and M. Mulato, "ZnO extended-gate field-effect transistors as pH sensors," Applied Physics Letters, vol. 87, no.14, pp. 143508-3, 2005.
    連結:
  16. 16. E. M. Guerra, G. R. Silva, and M. Mulato, "Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method," Solid State Sciences, vol. 11, no.2, pp. 456-460, 2009.
    連結:
  17. 17. R. Zhao, M. Xu, J. Wang, and G. Chen, "A pH sensor based on the TiO2 nanotube array modified Ti electrode," Electrochimica Acta, vol. 55, no.20, pp. 5647-5651, 2010.
    連結:
  18. 18. L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, no.1, pp. 19-23, Feb. 2000.
    連結:
  19. 19. H. K. Liao, J. C. Chou, W. Y. Chung, T.P. Sun, and S.K. Hsiung, "Study of amorphous tin oxide thin films for ISFET applications," Sensors and Actuators B: Chemical, vol. 50, no.2, pp. 104-109, 1998.
    連結:
  20. 21. R. M. Cohen, R. J. Huber, J. Janata, R. W. Ure, and S. D. Moss, “Study of the insulator materials used in ISFET gates,” Thin solid films, vol. 53, no. 2, pp. 169-173, 1978.
    連結:
  21. 22. J. van der spiegel, I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe," Sensors and Actuators, vol. 4, no.0, pp. 291-298, 1983.
    連結:
  22. 23. H. Ecken, S. Ingebrandt, M. Krause, D. Richter, M. Hara, and A. Offenhausser, “64-Channel extened gate electrode arrays for extracellular signal recording,” Electrochim. Acta, vol. 48, no. 20-22, pp. 3355-3362, Sep. 2003.
    連結:
  23. 24. J. C. Chen, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Portable urea biosensor based on the extended-gate field effect transistor,” Sens. Actuator B, vol. 91, no. 1-3, pp. 180-186, Jun. 2003.
    連結:
  24. 25. L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of indium tin oxide thin film for separative extended gate ISFET,” Mater. Chem.Phys., vol. 70, no. 1, pp. 12-16, Apr. 2001.
    連結:
  25. 26. J. C. Chou, J. L. Chiang, and C. L. Wu, “pH and Procaine Sensing Characteristics of Extended-Gate Field-Effect Transistor Based on Indium Tin Oxide Glass,” Jpn. J. Appl. Phys., vol. 44, no. 7A, pp. 4838-4832, Jul. 2005.
    連結:
  26. 27. J. L. Lin, Y. M. Chu, S. H. Hsaio, Y. L. Chin, and T.-P. Sun, "Structures of Anodized luminum Oxide Extended-Gate Field-Effect Transistors on pH Sensors," Japanese Journal of Applied Physics, vol. 45, no.10A, pp. 7999-8004, 2006.
    連結:
  27. 29. L. Bousse, "Single electrode potentials related to flat-band voltage measurements on EOS and MOS structures," The Journal of Chemical Physics, vol. 76, no.10, pp. 5128-5133, 1982.
    連結:
  28. 30. S. Trasatti, "Reply to “Remark on the paper of S. Trasatti: The concept of absolute electrode potential. An attempt at a calculation”, by A. Frumkin and B. Damaskin," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 66, no.2, pp. 155-161, 1975.
    連結:
  29. 31. J. O'M. Bockris and S. D. Argade, “Work Function of Metals and the Potential at Which They Have Zero Charge in Contact with Solutions”, J. Chem. Phys. , 49, (1968)p.5133-p.5134
    連結:
  30. 32. R. Parson, “in Modern Aspects of Electrochemistry”, Butterworths, London, Vol.1,1954
    連結:
  31. 33. L. Bousse, N. F. De Rooij, and P. Bergveld, "Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface," Electron Devices, IEEE Transactions on, vol. 30, no.10, pp. 1263-1270, 1983.
    連結:
  32. 34. D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," Journal of the Chemical Society, Faraday Transactions 1, vol. 70, p. 1807, 1974.
    連結:
  33. 35. W. M. Siu and R. S. C. Cobbold, "Basic properties of the electrolyte—SiO2—Si system: Physical and theoretical aspects," Electron Devices, IEEE Transactions on, vol. 26, no.11, pp. 1805-1815, 1979.
    連結:
  34. 36. C. D. Fung, P. W. Cheung, and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," Electron Devices, IEEE Transactions on, vol. 33, no.1, pp. 8-18, 1986.
    連結:
  35. 37. F. Gaboriaud and J. J. Ehrhardt, "Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study," Geochimica et Cosmochimica Acta, vol. 67, no.5, pp. 967-983, 2003.
    連結:
  36. 39. J. M. Kleijn, "The electrical double layer on oxides: Site-binding in the porous double layer model," Colloids and Surfaces, vol. 51, no.0, pp. 371-388, 1990.
    連結:
  37. 40. T. Hiemstra, J. C. M. De Wit, and W. H. Van Riemsdijk, "Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach: II. Application to various important (hydr)oxides," Journal of Colloid and Interface Science, vol. 133, no.1, pp. 105-117, 1989.
    連結:
  38. 41. R. E. G. van Hal, J. C. T. Eijkel, and P. Bergveld, "A general model to describe the electrostatic potential at electrolyte oxide interfaces," Advances in Colloid and Interface Science, vol. 69, no.1–3, pp. 31-62, 1996.
    連結:
  39. 42. T. Hiemstra and W. H. Van Riemsdijk, "Physical chemical interpretation of primary charging behaviour of metal (hydr) oxides," Colloids and Surfaces, vol. 59, no.0, pp. 7-25, 1991.
    連結:
  40. 43. S. Caras and J. Janata, "Field effect transistor sensitive to penicillin," Analytical Chemistry, vol. 52, no.12, pp. 1935-1937, 1980/10/01 1980.
    連結:
  41. 44. O. A. Boubriak, A. P. Soldatkin, N. F. Starodub, A. K. Sandrovsky, and A. K. El'skaya, "Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor," Sensors and Actuators B: Chemical, vol. 27, no.1–3, pp. 429-431, 1995.
    連結:
  42. 46. N. Jaffrezic-Renault and C. Martelet, "Semiconductor-based micro-biosensors," Synthetic Metals, vol. 90, no.3, pp. 205-210, 1997.
    連結:
  43. 47. C. Jiménez, J. Bartrol, N. F. de Rooij, and M. Koudelka-Hep, "Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction," Analytica Chimica Acta, vol. 351, no.1–3, pp. 169-176, 1997.
    連結:
  44. 48. C. Puig-Lleixà, C. l. Jiménez, J. Alonso, and J. Bartrolı́, "Polyurethane–acrylate photocurable polymeric membrane for ion-sensitive field-effect transistor based urea biosensors," Analytica Chimica Acta, vol. 389, no.1–3, pp. 179-188, 1999.
    連結:
  45. 49. A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, "Enzyme monolayer-functionalized field-effect transistors for biosensor applications," Sensors and Actuators B: Chemical, vol. 70, no.1–3, pp. 222-231, 2000.
    連結:
  46. 50. P. Chung-We, C. Jung-Chuan, S. Tai-Ping, and H. Shen-Kan, "Solid-state urea biosensor based on the differential method," Sensors Journal, IEEE, vol. 6, no.2, pp. 269-275, 2006.
    連結:
  47. 52. D. V. Gorchkov, S. Poyard, A. P. Soldatkin, N. Jaffrezic-Renault, and C. Martelet, "Application of the charged polymeric materials as additional permselective membranes for improvement of the performance characteristics of urea-sensitive ENFETs 2. Urea determination in blood serum," Materials Science and Engineering: C, vol. 5, no.1, pp. 29-34, 1997.
    連結:
  48. 55. J. Muñoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret, and C. Dominguez, "Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing," Biosensors and Bioelectronics, vol. 12, no.7, pp. 577-585, 1997.
    連結:
  49. 56. A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip," Talanta, vol. 50, no.1, pp. 219-226, 1999.
    連結:
  50. 57. C. Nien-Hsuan, C. Jung-Chuan, S. Tai-Ping, and H. Shen-Kan, "Study on the disposable urea biosensors based on PVC-COOH membrane ammonium ion-selective electrodes," Sensors Journal, IEEE, vol. 6, no.2, pp. 262-268, 2006.
    連結:
  51. 59. N. H. Chou, J. C. Chou, T. P. Sun, and S. K. Hsiung, "Differential type solid-state urea biosensors based on ion-selective electrodes," Sensors and Actuators B: Chemical, vol. 130, no.1, pp. 359-366, 2008.
    連結:
  52. 60. P. A. Hammond, D. Ali, and D. R. S. Cumming, "Design of a single-chip pH sensor using a conventional 0.6-μm CMOS process," Sensors Journal, IEEE, vol. 4, no.6, pp. 706-712, 2004.
    連結:
  53. 61. R. L. Smith and D. C. Scott, "An Integrated Sensor for Electrochemical Measurements," Biomedical Engineering, IEEE Transactions on, vol. BME-33, no.2, pp. 83-90, 1986.
    連結:
  54. 62. I. Y. Huang and R.-S. Huang, "Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors," Thin Solid Films, vol. 406, no.1–2, pp. 255-261, 2002.
    連結:
  55. 63. C. S. Lai, C. E. Lue, C. M. Yang, and D. G. Pijanowska, "Fluorine Incorporation and Thermal Treatment on Single and Stacked Si3N4 Membranes for ISFET/REFET Application," Journal of the Electrochemical Society, vol. 157, no.1, pp. J8-J12, 2010.
    連結:
  56. 65. P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," Biomedical Engineering, IEEE Transactions on, vol. BME-17, no.1, pp. 70-71, 1970.
    連結:
  57. 66. H. H. van den Vlekkert, N. F. de Rooij, A. van den Berg, and A. Grisel, "Multi-ion sensing system based on glass-encapsulated pH-ISFETs and a pseudo-REFET," Sensors and Actuators B: Chemical, vol. 1, no.1–6, pp. 395-400, 1990.
    連結:
  58. 67. V. K. Khanna, W. Oelßner, and U. Guth, "Interfacial and adhesional aspects in polyurethane (PUR) membrane coating on Si3N4 surface of ISFET gate for REFET fabrication," Applied Surface Science, vol. 255, no.17, pp. 7798-7804, 2009.
    連結:
  59. 68. Z. M. Baccar, N. Jaffrezic-Renault, C. Martelet, H. Jaffrezic, G. Marest, and A. Plantier, "Sodium microsensors based on ISFET/REFET prepared through an ion-implantation process fully compatible with a standard silicon technology," Sensors and Actuators B: Chemical, vol. 32, no.2, pp. 101-105, 1996.
    連結:
  60. 69. C. C. Chen and J. C. Chou, "All-Solid-State Conductive Polymer Miniaturized Reference Electrode," Japanese Journal of Applied Physics, vol. 48, no.11, p. 111501, 2009.
    連結:
  61. 70. C. W. Pan, J. C. Chou, I. K. Kao, T. P. Sun, and S. K. Hsiung, "Using polypyrrole as the contrast pH detector to fabricate a whole solid-state pH sensing device," IEEE Sensors Journal, vol. 3, no.2, pp. 164-170, Apr 2003.
    連結:
  62. 72. H. L. Chen, Y. M. Lu, and W. S. Hwang, "Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films," Materials Transactions, vol. 46, no.4, pp. 872-879, Apr 2005.
    連結:
  63. 74. W. H. Zachariasen and E. L. Hill, "The Theory of X-ray Diffraction in Crystals," The Journal of Physical Chemistry, vol. 50, no.3, pp. 289-290, 1946/03/01 1946.
    連結:
  64. 77. Y. Miao, J. Chen, and K. Fang, “New technology for the detection of pH,” J.Biochem. Biophys. Methods, vol. 63, no. 1, pp. 1-9, Apr. 2005.
    連結:
  65. 78. J. C. Chou, H. Y. Yang, and C. W. Chen, “Glucose biosensor of ruthenium-doped TiO2 sensing electrode by co-sputtering system,” Microelectron. Reliab., vol. 50, no. 5, pp. 753-756, May 2010.
    連結:
  66. 79. S. K. Wixson, W. J. White, H. C. Jr Hughes, C. M. Lang, and W. K. Marshall, “The effects of pentobarbital, fentanyl-droperidol, ketamine-xylazine and ketamine-diazepam on arterial blood pH, blood gases, mean arterial blood pressure and heart rate in adult male rats,” Lab Anim Sci., vol. 37, no. 6, pp. 736-742, Dec. 1987.
    連結:
  67. 80. B. J. C. Deboux, E. Lewis, P. J. Scully, and R. Edwards, “A novel technique for optical fibre pH sensing based on methylene blue adsorption,” J. Lightwave Technol., vol. 13, no. 7, pp. 1407-1414, Jul. 1995.
    連結:
  68. 82. S. Yao, M. Wang, and M. Madou, “A pH electrode based on melt-oxidized iridium oxide,” J. Electrochem. Soc., vol. 148, no. 4, pp. 29-36, Apr. 2001.
    連結:
  69. 83. A. Talaie, J. Y. Lee, Y. K. Lee, J. Jang, J. A. Romagnoli, T. Taguchi, and E. Maeder, “Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices,” Thin Solid Films, vol. 363, no. 1-2, pp. 163-166, Mar. 2000.
    連結:
  70. 84. W. S. Han, M. Y. Park, D. H. Cho, T. K. Hong, D. H. Lee, and J. M. Park, “the behavior of a poly(aniline) solid contact pH selective electrode based on N, N, N’, N’-tetrabenzylethanediamine ionophore,” Anal Sci., vol. 17, no. 6, pp.727-732, Apr. 2001.
    連結:
  71. 85. M. J. Schoning, A. Simonis, C. Ruge, H. Ecken, M. Muller-Veggian, and H. Luth, ” A (bio-)chemical field-effect sensor with macroporous Si as substrate material and a SiO2 /LPCVD–Si3N4 double layer as pH transducer,” Sensors, vol. 2, pp. 11-22, Jan. 2002.
    連結:
  72. 86. P. A. Comte and J. Janata, "A field effect transistor as a solid-state reference electrode," Analytica Chimica Acta, vol. 101, no.2, pp. 247-252, 1978.
    連結:
  73. 87. T. Matsuo and H. Nakajima, "Characteristics of reference electrodes using a polymer gate ISFET," Sensors and Actuators, vol. 5, no.4, pp. 293-305, 1984.
    連結:
  74. 89. T. W. Lewis, G. G. Wallace, C. Y. Kim, and D. Y. Kim, "Studies of the overoxidation of polypyrrole," Synthetic Metals, vol. 84, no.1-3, pp. 403-404, 1997.
    連結:
  75. 90. Y. Li and R. Qian, "Electrochemical overoxidation of conducting polypyrrole nitrate film in aqueous solutions," Electrochimica Acta, vol. 45, no.11, pp. 1727-1731, 2000.
    連結:
  76. 91. B. J. Hwang and K. L. Lee, "Electrocatalytic oxidation of 2-chlorophenol on a composite PbO2/polypyrrole electrode in aqueous solution," Journal of Applied Electrochemistry, vol. 26, no.2, pp. 153-159, 1996/02/01 1996.
    連結:
  77. 92. B. J. Hwang and K. L. Lee, "Conductivity and stability of polypyrrole film electrosythesized on a PbO2/SnO2/Ti substrate," Thin Solid Films, vol. 254, no.1-2, pp. 23-27, Jan 1 1995.
    連結:
  78. 93. H. Münstedt, "Properties of polypyrroles treated with base and acid," Polymer, vol. 27, no.6, pp. 899-904, 1986.
    連結:
  79. 94. A. Ramsing, J. Růžička, and E. H. Hansen, "A new approach to enzymatic assay based on flow-injection spectrophotometry with acid-base indicators," Analytica Chimica Acta, vol. 114, no.0, pp. 165-181, 1980.
    連結:
  80. 95. F. Roch-Ramel, "An enzymic and fluorophotometric method for estimating urea concentrations in nanoliter specimens," Analytical Biochemistry, vol. 21, no.3, pp. 372-381, 1967.
    連結:
  81. 96. N. F. Sheppard Jr, D. J. Mears, and A. Guiseppi-Elie, "Model of an immobilized enzyme conductimetric urea biosensor," Biosensors and Bioelectronics, vol. 11, no.10, pp. 967-979, 1996.
    連結:
  82. 97. C. Stamm, K. Seiler, and W. Simon, "Enzymatic biosensor for urea based on an ammonium ion-selective bulk optode membrane," Analytica Chimica Acta, vol. 282, no.2, pp. 229-237, 1993.
    連結:
  83. 98. E. Palmqvist, C. Berggren Kriz, K. Svanberg, M. Khayyami, and D. Kriz, "DC-resistometric urea sensitive device utilizing a conducting polymer film for the gas-phase detection of ammonia," Biosensors and Bioelectronics, vol. 10, no.3–4, pp. 283-287, 1995.
    連結:
  84. 99. B. Strehlitz, B. Gründig, and H. Kopinke, "Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions," Analytica Chimica Acta, vol. 403, no.1–2, pp. 11-23, 2000.
    連結:
  85. 100. P. Bertocchi, D. Compagnone, and G. Palleschi, "Amperometric ammonium ion and urea determination with enzyme-based probes," Biosensors and Bioelectronics, vol. 11, no.1–2, pp. 1-10, 1996.
    連結:
  86. 101. S. B. Adeloju, S. J. Shaw, and G. G. Wallace, "Polypyrrole-based amperometric flow injection biosensor for urea," Analytica Chimica Acta, vol. 323, no.1–3, pp. 107-113, 1996.
    連結:
  87. 102. B. Liu, R. Hu, and J. Deng, "Studies on a potentiometric urea biosensor based on an ammonia electrode and urease, immobilized on a γ-aluminum oxide matrix," Analytica Chimica Acta, vol. 341, no.2–3, pp. 161-169, 1997.
    連結:
  88. 103. O. A. Boubriak, A. P. Soldatkin, N. F. Starodub, A. K. Sandrovsky, and A. K. El'skaya, "Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor," Sensors and Actuators B: Chemical, vol. 27, no.1–3, pp. 429-431, 1995.
    連結:
  89. 104. O. A. Boubriak, A. P. Soldatkin, N. F. Starodub, A. K. Sandrovsky, and A. K. El'skaya, "Determination of urea in blood serum by a urease biosensor based on an ion-sensitive field-effect transistor," Sensors and Actuators B: Chemical, vol. 27, no.1–3, pp. 429-431, 1995.
    連結:
  90. 105. T. Osaka, S. Komaba, M. Seyama, and K. Tanabe, "High-sensitivity urea sensor based on the composite film of electroinactive polypyrrole with polyion complex," Sensors and Actuators B: Chemical, vol. 36, no.1–3, pp. 463-469, 1996.
    連結:
  91. 106. S. Komaba, M. Seyama, T. Momma, and T. Osaka, "Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole," Electrochimica Acta, vol. 42, no.3, pp. 383-388, 1997.
    連結:
  92. 107. C. Jiménez, J. Bartrol, N. F. de Rooij, and M. Koudelka-Hep, "Use of photopolymerizable membranes based on polyacrylamide hydrogels for enzymatic microsensor construction," Analytica Chimica Acta, vol. 351, no.1–3, pp. 169-176, 1997.
    連結:
  93. 108. R. Koncki, I. Wałcerz, and E. Leszczyńska, "Enzymatically modified ion-selective electrodes for flow injection analysis," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no.3–4, pp. 633-638, 1999.
    連結:
  94. 109. A. B. Kharitonov, M. Zayats, A. Lichtenstein, E. Katz, and I. Willner, "Enzyme monolayer-functionalized field-effect transistors for biosensor applications," Sensors and Actuators B: Chemical, vol. 70, no.1–3, pp. 222-231, 2000.
    連結:
  95. 110. A. P. Soldatkin, J. Montoriol, W. Sant, C. Martelet, and N. Jaffrezic-Renault, "A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs," Biosensors and Bioelectronics, vol. 19, no.2, pp. 131-135, 2003.
    連結:
  96. 111. A. Senillou, N. Jaffrezic-Renault, C. Martelet, and S. Cosnier, "A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip," Talanta, vol. 50, no.1, pp. 219-226, 1999.
    連結:
  97. 112. S. Zamponi, B. Lo Cicero, M. Mascini, L. Della Ciana, and S. Sacco, "Urea solid-state biosensor suitable for continuous dialysis control," Talanta, vol. 43, no.8, pp. 1373-1377, 1996.
    連結:
  98. 113. J. Muñoz, C. Jimenez, A. Bratov, J. Bartroli, S. Alegret, and C. Dominguez, "Photosensitive polyurethanes applied to the development of CHEMFET and ENFET devices for biomedical sensing," Biosensors and Bioelectronics, vol. 12, no.7, pp. 577-585, 1997.
    連結:
  99. 20. P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuator B, vol. 88, no. 1, pp. 1-20, 2003.
  100. 28. Neamen, Donald A , “Semiconductor physics and devices :basic principles”, McGraw-Hill , 2003
  101. 38. J. Lyklema , “The electrical double layer on oxides” , Croatica Chem. Acta, 43(1971) p249
  102. 45. D. G. Pijanowska and W. Torbicz, "pH-ISFET based urea biosensor," Sensors and Actuators B: Chemical, vol. 44, no.1–3, pp. 370-376, 1997.
  103. 51. L. L. Chi, L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung, and S. K. Hsiung, "Study on separative structure of EnFET to detect acetylcholine," Sensors and Actuators B: Chemical, vol. 71, no.1–2, pp. 68-72, 2000.
  104. 53. W. Sant, M. L. Pourciel, J. Launay, T. Do Conto, A. Martinez, and P. Temple-Boyer, "Development of chemical field effect transistors for the detection of urea," Sensors and Actuators B: Chemical, vol. 95, no.1–3, pp. 309-314, 2003.
  105. 54. J. Q. Wang, J. C. Chou, T. P. Sun, S. K. Hsiung, and G. B. Hsiung, "pH-based potentiometrical flow injection biosensor for urea," Sensors and Actuators B: Chemical, vol. 91, no.1–3, pp. 5-10, 2003.
  106. 58. M. L. Hamlaoui, K. Reybier, M. Marrakchi, N. Jaffrezic-Renault, C. Martelet, R. Kherrat, and A. Walcarius, "Development of a urea biosensor based on a polymeric membrane including zeolite," Analytica Chimica Acta, vol. 466, no.1, pp. 39-45, 2002.
  107. 64. A. Errachid, J. Bausells, and N. Jaffrezic-Renault, "A simple REFET for pH detection in differential mode," Sensors and Actuators B: Chemical, vol. 60, no.1, pp. 43-48, 1999.
  108. 71. P. Bergveld, A. Van Den Berg, P. D. Van Der Wal, M. Skowronska-Ptasinska, E. J. R. Sudhölter, and D. N. Reinhoudt, "How electrical and chemical requirements for refets may coincide," Sensors and Actuators, vol. 18, no.3–4, pp. 309-327, 1989.
  109. 73. G. Bauer and W. Richter, “Optical characterization of epitaxial semiconductor layers,” Springer Berlin, 1996
  110. 75. G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Physical Review Letters, vol. 56, no.9, pp. 930-933, 1986.
  111. 76. T. J. Marrie and J. W. Costerton, “Scanning and transmission electron microscopy of in situ bacterial colonization of intravenous and intraarterial catheters,” J. Clin. Microbiol., vol.19 , no. 5, pp. 687-693, May 1984.
  112. 81. C. Ruan, K. Zeng, and C. A. Grimes, “A mass-sensitive pH sensor based on a stimuli–responsive polymer,” Anal. Chim. Acta, vol. 497, no. 1-2, pp. 123-131, Nov. 2003. 69. S. Yao, M. Wang, and M. Madou, “A pH electrode based on melt-oxidized iridium oxide,” J. Electrochem. Soc., vol. 148, no. 4, pp. 29-36, Apr. 2001.
  113. 88. A. Errachid, J. Bausells, and N. Jaffrezic-Renault, "A simple REFET for pH detection in differential mode," Sensors and Actuators B: Chemical, vol. 60, no.1, pp. 43-48, 1999.
  114. 114. M. L. Hamlaoui, K. Reybier, M. Marrakchi, N. Jaffrezic-Renault, C. Martelet, R. Kherrat, and A. Walcarius, "Development of a urea biosensor based on a polymeric membrane including zeolite," Analytica Chimica Acta, vol. 466, no.1, pp. 39-45, 2002.