Title

應用奈米碳材於染料敏化太陽能電池之光電化學特性研究

Translated Titles

Study on effects of carbonaceous nanomaterials towards photoelectrochemical behavior in dye-sensitized solar cells

Authors

陳燕芳

Key Words

電漿技術 ; 奈米碳管 ; 奈米碳球 ; 石墨烯 ; 奈米複合材料 ; 染料敏化太陽能電池 ; 電子傳遞 ; plasma ; carbon nanotubes ; nanocomposites ; DSSC ; carbon nanocapsules ; graphene ; gel electrolyte ; electron transport

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

陳志勇

Content Language

英文

Chinese Abstract

奈米碳材具有獨特的性質如:高的長直比、優異的機械強度、奈米級的微結構和良好的導電性,更由於柰米科技的開發,使奈米碳材(包括柰米碳管、碳球、石墨烯)成爲研究的重點之一。在染料敏化太陽能電池(DSSC)中,奈米二氧化鈦(TiO2)薄膜光電極是影響其光電特性以及效能的重要因素,TiO2顆粒之間的晶界容易產生缺陷, 不利於電子傳遞,使得電子傳遞的速度降低,電子電洞再結合的機率上升,因此限制了電池的光轉換效率。 本研究第一部分旨在探討利用混參具優異導電性之奈米碳材於DSSC光電極,以改善DSSC元件中之工作電極中的電子傳輸,進而增進此太陽能電池的效率與穩定性。我們利用導電性良好的一維多壁奈米碳管(MWCNTs)及零維奈米碳球(CNCs)添加於使用溶膠凝膠法製備的二氧化鈦奈米顆粒。首先,爲了使具有強大凡得瓦力的碳材可以均勻地分散於TiO2顆粒中,有別於一般的強酸處理方法或添加分散劑,本研究使用本實驗室開發的電漿表面處理技術,將親油性順丁烯二酸酐(Maleic anhydride, MA)分子接枝聚合於奈米碳材表面,分別簡稱為MWCNTs-MA和CNCs-MA。使TiO2奈米顆粒(~18nm)緊密地附著在CNCs-MA以及MWCNTs-MA上,製備出高均勻性的CNCs-MA/TiO2 和MWCNTs-MA/TiO2奈米複合材料,作為DSSC中之光電極材料。 實驗結果顯示,本實驗以電漿處理方式可成功的將TiO2包覆於奈米碳材表面,利於電子從TiO2跳躍至電阻較低的碳材。經過太陽能光電轉換效率的測試結果顯示,0.5wt% CNCs-MA/TiO2讓DSSC的光電轉換效率從原先之5.88%最高提升至6.76% ,0.3wt%MWCNTs-MA/TiO2奈米複合薄膜最高效率可提升到9.03%。此系統最佳效率提升約50%,相較於只提升30%的CNC-MA系統,説明了具有高導電度以及1-D微結構的MWCNT-MA更有效的利於電子傳遞,大幅增加光電流密度。此外,由交流阻抗分析結果說明MWCNTs-MA的添加,較CNCs-MA更可於TiO2複合材料薄膜內形成有效的電子匯聚通路,可增加電子的傳遞,提高DSSC之短路電流密度;再者,MWCNTs-MA/TiO2薄膜擁有90%以上的電子收集效率,而CNCs-MA/TiO2的為76% ,這歸因於MWCNTs可提供一較有效的單一方向電子傳導路徑。 由於TiO2顆粒的整體結構以及傳輸屬於不連續相,因此爲了製備連續相的TiO2顆粒,此部分的研究也包括了利用靜電紡絲技術製備TiO2奈米纖維,取代之前的奈米顆粒,以期得到較低密度的晶界缺陷或阻礙,並同時加入經電漿處理之MWCNT-MA。 實驗結果顯示跟之前的結果吻合,添加MWCNT於TiO2奈米纖維一樣可達到提升的效率,不過礙於比顆粒相較小的表面積以及纖維與纖維之前的孔洞,因此總效率沒有顆粒的來得高。此結構組裝而成的DSSC最高效率為1wt% 添加量時得到的4.87%。 除了工作電極,而液態的電解液也有洩漏,穩定性,封裝,大面積生産等的問題存在, 因此在第二部分探討利用polyacrylonitrile (PAN)高分子膠態電解液,以應用於半固態DSSC裏的膠態高分子電解質。而由於高分子的離子擴散會因爲黏度下降而影響電解液的功能,此部分的實驗是利用二維的石墨烯 (graphene,Gr)於電解質形成複合材料,以提高電解液的離子導電度以及離子的解離,並利於碘離子的氧化還原反應。利用本實驗室開發的方法使其先剝層,並添加於PAN電解質中,在0.2wt%添加量下,所製備的電池顯現最佳的效率,較純PAN電解液提升45% ,説明了利用石墨烯可增加電解質離子解離及提高電解質的離子導電度導,進一步將此最佳的電解質配方搭配0.3wt% MWCNTs-MA/TiO2 ,效率可達7.93%。

English Abstract

Carbonaceous nanomaterials, inclusive of single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), carbon nanocapsules (CNC) and graphenes (Gr) appear to be focus of attention for their high aspect ratio, excellent electronic, mechanical, optical, and chemical characteristics. Carbonaceous nanomaterials provides a broad survey in the context of commercially available nanomaterials as well as emerging technologies and future applications in the fields of molecular electronics, sensoring, nano- and micro- electromechanic devices, field-emission displays, energy storage, and composite materials. Photoanode in dye-sensitized solar cell (DSSC) is a primary decisive component controlling its light-to-electric conversion efficiency. The mesoporous TiO2 film commonly constructed based on high-surface area nanoparticles, is accompanied with uncountable crystal defects and grain boundaries that seemingly retard electron transport rate, as well as promoting recombination of electrons and holes. In the first part of this study, we examined the electrical properties of the nanocomposite for TiO2 nanoparticles mixed with CNCs and MWCNTs pre-treated with plasma modification process followed by grafting with maleic anhydride (MA). The conductive carbon nanomaterials are expected to provide pathway for electron transfer to achieve better photovoltaic performance. The TiO2 nanoparticles were prepared by sol-gel and autoclaving technique. The carbon nanomaterials were dispersed to achieve homogenous suspension prior to mixing of TiO2 nanoparticles. The series of anatase TiO2-based nanocomposite incorporated with carbon nanomaterials-MA prepared by physical blending shows its capability for efficient electron transport when used as photoanode in DSSC. Compared to the conventional DSSCs, the TiO2 film with 1-D MWCNTs-MA possesses more outstanding ability to transport electrons injected from the excited dye within the device under illumination. As a result, at an optimum addition of 0.3wt% MWCNTs-MA in TiO2 matrix, the photocurrent voltage (J-V) characteristics showed a significant increase in the short-circuit photocurrent (Jsc) of 50%, leading to an increase in overall solar conversion efficiency by a factor of 1.5. Electrochemical impedance spectroscopy analyses revealed that the MWCNTs-MA/TiO2 incur smaller resistances at the photoanode in assembled DSSC when compared to those in the anatase titania DSSCs. On the other hand, DSSC based on CNCs-MA/TiO2 achieved about 30% improvement in efficiency. The results suggest that both the conducting properties and 1-D microstructure of the MWCNTs-MA within the anodes are crucial for achieving a higher transport rate for photoinduced electrons in TiO2 layer by serving as charge conduits with specific direction for better electron percolation. The best cell efficiency for MWCNTs-MA composite was 9.03% at 0.3wt.%, whilst 6.76% for 0.5wt% CNCs-MA photoanode system. Along with these finding, the TiO2 nanoparticulate system was further replaced by nanofibers prepared using electrospinning technique to provide a more continuous conduction path with minimal amount of crystal defects among randomly distributed nanoparticles. The MWCNTs-MA were added into the TiO2 sol-gel suspension in polymeric (polymethyl methacrylate) solution before electrospinning. The results demonstrated results in good consistency with the previous part, wherein the incorporation of highly conductive MWCNTs-MA provided improvement in the cell performance. The highest conversion efficiency was found to be 4.88%, with about 47% improvement when compared to pristine TiO2 nanofibrous photoanode. This optimal efficiency is apparently lower than the one of nanoparticulate, attributed mainly to the relatively smaller surface area available for dye adsorption. In the second part, quasi-state DSSC was prepared to overcome the solvent volatility and leakage problems accompanied with the liquid electrolyte conventionally used. Graphene (Gr), the 2-D carbon nanomaterial was used in the polymer gel-state electrolyte (PGE) based on polyacrylonitrile (PAN) to compensate for its weaker ion conductivity due to poorer mobility. The DSSCs fabricated with optimized composite electrolyte, 0.2wt% PAN-Gr gel electrolyte, showed significantly improved conversion efficiency (4.43%) in comparison to the DSSC fabricated with pristine PAN PGE, implying better ion conductivity and Lil dissociation contributed by addition of Gr. Moreover, the cell efficiency achieved 7.93% when the cell was assembled using the 0.3wt% MWCNTs-MA/TiO2 composite.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. [1] S.M. Jo, M.Y. Song, Y.R. Ahn, C.R. Park, D.Y. Kim, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 42 (2005) 1529-1540.
    連結:
  2. [4] Technology Roadmap - Solar Photovoltaic Energy, (2010).
    連結:
  3. [6] J. Wang, Electroanalysis, 17 (2005) 7-14.
    連結:
  4. [7] H.J. Dai, Surf. Sci., 500 (2002) 218-241.
    連結:
  5. [13] V. Subramanian, E.E. Wolf, P.V. Kamat, Journal of the American Chemical Society, 126 (2004) 4943-4950.
    連結:
  6. [16] S. Iijima, Nature, 354 (1991) 56-58.
    連結:
  7. [21] M. Adachi, J. Jiu, S. Isoda, Current Nanoscience, 3 (2007) 285-295.
    連結:
  8. [27] K.H. Ko, Y.C. Lee, Y.J. Jung, Journal of Colloid and Interface Science, 283 (2005) 482-487.
    連結:
  9. [29] B. Tan, Y. Wu, The Journal of Physical Chemistry B, 110 (2006) 15932-15938.
    連結:
  10. [30] C.Y. Yen, Y.F. Lin, S.H. Liao, C.C. Weng, C.C. Huang, Y.H. Hsiao, C.C.M. Ma, M.C. Chang, H. Shao, M.C. Tsai, C.K. Hsieh, C.H. Tsai, F.B. Weng, Nanotechnology, 19 (2008) 375305-375314.
    連結:
  11. [33] A. Kongkanand, P.V. Kamat, ACS Nano, 1 (2007) 13-21.
    連結:
  12. [35] A.K. Geim, K.S. Novoselov, Nat Mater, 6 (2007) 183-191.
    連結:
  13. [53] K. Mukherjee, T.H. Teng, R. Jose, S. Ramakrishna, Appl. Phys. Lett., 95 (2009).
    連結:
  14. [58] C.H. Tseng, C.C. Wang, C.Y. Chen, Chem. Mat., 19 (2006) 308-315.
    連結:
  15. [72] Y.L. Lee, Y.J. Su, Y.M. Yang, Nanotechnology, 19 (2008) 455201.
    連結:
  16. [73] F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R. Caminiti, The Journal of Physical Chemistry B, 103 (1999) 10632-10638.
    連結:
  17. [74] P. Li, J. Wu, S. Hao, Z. Lan, Q. Li, Y. Huang, Journal of Applied Polymer Science, 120 (2011) 1752-1757.
    連結:
  18. [79] Z. Lan, J. Wu, J. Lin, M. Huang, Polymers for Advanced Technologies, 22 (2011) 1812-1815.
    連結:
  19. [85] Y.C. Wang, K.C. Huang, R.-X. Dong, C.T. Liu, C.-C. Wang, K.-C. Ho, J.-J. Lin, Journal of Materials Chemistry, 22 (2012) 6982-6989.
    連結:
  20. [92] J. Bisquert, Physical Chemistry Chemical Physics, 10 (2008) 49-72.
    連結:
  21. [95] L.M. Peter, K.G.U. Wijayantha, Electrochemistry Communications, 1 (1999) 576-580.
    連結:
  22. [101] K.M. Lee, C.W. Hu, H.W. Chen, K.C. Ho, Solar Energy Materials and Solar Cells, 92 (2008) 1628-1633.
    連結:
  23. [102] W.J. Chou, C.C. Wang, C.Y. Chen, Compos. Sci. Technol., 68 (2008) 2208-2213.
    連結:
  24. [104] G. Boschloo, D. Fitzmaurice, The Journal of Physical Chemistry B, 103 (1999) 2228-2231.
    連結:
  25. [108] R.L. Willis, C. Olson, B. O'Regan, T. Lutz, J. Nelson, J.R. Durrant, The Journal of Physical Chemistry B, 106 (2002) 7605-7613.
    連結:
  26. [113] J.-J. Wu, Y.-R. Chen, W.-P. Liao, C.-T. Wu, C.-Y. Chen, ACS Nano, 4 (2010) 5679-5684.
    連結:
  27. [115] Q. Wang, Z. Zhang, S.M. Zakeeruddin, M. Gratzel, J. Phys. Chem. C, 112 (2008) 7084-7092.
    連結:
  28. [120] D. Ke, et al., Nanotechnology, 20 (2009) 125603.
    連結:
  29. [121] C.Y. Yen, Y.F. Lin, S.H. Liao, C.C. Weng, C.C. Huang, Y.H. Hsiao, C.C. Ma, M.C. Chang, H. Shao, M.C. Tsai, C.K. Hsieh, C.H. Tsai, F.B. Weng, Nanotechnology, 19 (2008) 375305.
    連結:
  30. [123] M. Grätzel, F.P. Rotzinger, Chem. Phys. Lett., 118 (1985) 474-477.
    連結:
  31. [126] Z. Bashir, Journal of Polymer Science Part B: Polymer Physics, 30 (1992) 1299-1304.
    連結:
  32. [127] A. Hauch, A. Georg, Electrochimica Acta, 46 (2001) 3457-3466.
    連結:
  33. [2] T.G. Doung, Freedom Car & Vehicle Technologies Program, (2003).
  34. [3] B. O'Regan, M. Gratzel, Nature, 353 (1991) 737-740.
  35. [5] B.S. Files, B.M. Mayeaux, Adv. Mater. Process., 156 (1999) 47-49.
  36. [8] P.V. Kamat, G.C. Schatz, The Journal of Physical Chemistry C, 113 (2009) 15473-15475.
  37. [9] J. Bisquert, A. Zaban, Applied Physics a-Materials Science & Processing, 77 (2003) 507-514.
  38. [10] P. Brown, K. Takechi, P.V. Kamat, The Journal of Physical Chemistry C, 112 (2008) 4776-4782.
  39. [11] I.A. Shkrob, M.C. Sauer, The Journal of Physical Chemistry B, 108 (2004) 12497-12511.
  40. [12] K.P. Wang, H.S. Teng, Physical Chemistry Chemical Physics, 11 (2009) 9489-9496.
  41. [14] G. Burgeth, H. Kisch, Coordination Chemistry Reviews, 230 (2002) 41-47.
  42. [15] M. Jakob, H. Levanon, P.V. Kamat, Nano Letters, 3 (2003) 353-358.
  43. [17] A. Mostofizadeh, Y. Li, B. Song, Y. Huang, Journal of Nanomaterials, 2011 (2011).
  44. [18] Z. Wang, P. Xiao, N. He, Carbon, 44 (2006) 3277-3284.
  45. [19] P.Z. Si, Z.D. Zhang, D.Y. Geng, C.Y. You, X.G. Zhao, W.S. Zhang, Carbon, 41 (2003) 247-251.
  46. [20] H. Kuo Chu, Journal of Physics D: Applied Physics, 43 (2010) 374001.
  47. [22] M. Adachi, M. Sakamoto, J.T. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B, 110 (2006) 13872-13880.
  48. [23] 趙以諾, 周大鑫, 劉景男, 第十屆奈米工程暨微系統技術研討會, (2007).
  49. [24] M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry, 164 (2004) 3-14.
  50. [25] P.V. Kamat, M. Haria, S. Hotchandani, The Journal of Physical Chemistry B, 108 (2004) 5166-5170.
  51. [26] A. Kitiyanan, S. Ngamsinlapasathian, S. Pavasupree, S. Yoshikawa, Journal of Solid State Chemistry, 178 (2005) 1044-1048.
  52. [28] M. Adachi, Y. Murata, I. Okada, S. Yoshikawa, Journal of the Electrochemical Society, 150 (2003) G488-G493.
  53. [31] H.J. Choi, J.E. Shin, G.-W. Lee, N.-G. Park, K. Kim, S.C. Hong, Current Applied Physics, 10 (2010) S165-S167.
  54. [32] A. Kongkanand, R. Martínez Domínguez, P.V. Kamat, Nano Letters, 7 (2007) 676-680.
  55. [34] M.S. Akhtar, J.H. Hyung, T.H. Kim, O.B. Yang, S.K. Lee, Japanese Journal of Applied Physics, 48 (2009) 125003.
  56. [36] C. Mattevi, H. Kim, M. Chhowalla, Journal of Materials Chemistry, 21 (2011).
  57. [37] W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Critical Reviews in Solid State and Materials Sciences, 35 (2010) 52-71.
  58. [38] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Nat Nano, 3 (2008) 101-105.
  59. [39] E.H. Hwang, S. Das Sarma, Physical Review B, 75 (2007) 205418.
  60. [40] J.-S. Lee, Y.-I. Lee, H. Song, D.-H. Jang, Y.-H. Choa, Current Applied Physics, 11 (2011) S210-S214.
  61. [41] D. Li, Y. Xia, Nano Letters, 3 (2003) 555-560.
  62. [42] S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, K.J. Balkus, Microporous and Mesoporous Materials, 69 (2004) 77-83.
  63. [43] B. Ding, H. Kim, C. Kim, M. Khil, S. Park, Nanotechnology, 14 (2003) 532-537.
  64. [44] P. Viswanathamurthi, N. Bhattarai, C.K. Kim, H.Y. Kim, D.R. Lee, Inorganic Chemistry Communications, 7 (2004) 679-682.
  65. [45] R. Jose, A. Kumar, V. Thavasi, S. Ramakrishna, Nanotechnology, 19 (2008) 424004-424011.
  66. [46] K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Nanotechnology, 18 (2007) 365709-365714.
  67. [47] W. Zhang, R. Zhu, L. Ke, X. Liu, B. Liu, S. Ramakrishna, Small, 6 (2010) 2176-2182.
  68. [48] P. Joshi, L. Zhang, D. Davoux, Z. Zhu, D. Galipeau, H. Fong, Q. Qiao, Energy & Environmental Science, 3 (2010) 1507-1510.
  69. [49] K. Onozuka, B. Ding, Y. Tsuge, T. Naka, M. Yamazaki, S. Sugi, S. Ohno, M. Yoshikawa, S. Shiratori, Nanotechnology, 17 (2006) 1026–1031.
  70. [50] M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Nanotechnology, 15 (2004) 1861–1865.
  71. [51] B.H. Lee, M.Y. Song, S.-Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, The Journal of Physical Chemistry C, 113 (2009) 21453-21457.
  72. [52] P.S. Archana, R. Jose, C. Vijila, S. Ramakrishna, The Journal of Physical Chemistry C, 113 (2009) 21538-21542.
  73. [54] S. Kedem, D. Rozen, Y. Cohen, Y. Paz, The Journal of Physical Chemistry C, 113 (2009) 14893-14899.
  74. [55] S. Kedem, J. Schmidt, Y. Paz, Y. Cohen, Langmuir, 21 (2005) 5600-5604.
  75. [56] G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, Journal of Materials Science, 42 (2007) 7162-7170-7170.
  76. [57] R. Zhu, C.-Y. Jiang, X.-Z. Liu, B. Liu, A. Kumar, S. Ramakrishna, Appl. Phys. Lett., 93 (2008).
  77. [59] C.H. Tseng, C.C. Wang, C.Y. Chen, Nanotechnology, 17 (2006) 5602-5612.
  78. [60] I.H. Chen, C.C. Wang, C.Y. Chen, Plasma Processes and Polymers, 7 (2010) 59-63.
  79. [61] M. Grätzel, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4 (2003) 145-153.
  80. [62] M. Adachi, I. Okada, S. Ngamsinlapasathian, Y. Murata, S. Yoshikawa, Electrochemistry Communications, 70 (2002) 449-452.
  81. [63] B.E. Hardin, H.J. Snaith, M.D. McGehee, Nat Photon, 6 (2012) 162-169.
  82. [64] M. Grätzel, Inorganic Chemistry, 44 (2005) 6841-6851.
  83. [65] T. Hoshikawa, T. Ikebe, M. Yamada, R. Kikuchi, K. Eguchi, Journal of Photochemistry and Photobiology A: Chemistry, 184 (2006) 78-85.
  84. [66] M.S. Akhtar, J.H. Hyung, D.J. Kim, T.H. Kim, S.K. Lee, O.B. Yang, Journal of the Korean Physical Society, 56 (2010) 813-817.
  85. [67] K. Aitola, A. Kaskela, J. Halme, V. Ruiz, A.G. Nasibulin, E.I. Kauppinen, P.D. Lund, Journal of the Electrochemical Society, 157 (2010) B1831-B1837.
  86. [68] J.J. Wu, G.R. Chen, C.C. Lu, W.T. Wu, J.S. Chen, Nanotechnology, 19 (2008).
  87. [69] M. Grätzel, Coordination Chemistry Reviews, 111 (1991) 167-174.
  88. [70] A.F. Nogueira, C. Longo, M.A. De Paoli, Coordination Chemistry Reviews, 248 (2004) 1455-1468.
  89. [71] H.W. Han, W. Liu, J. Zhang, X.Z. Zhao, Advanced Functional Materials, 15 (2005) 1940-1944.
  90. [75] X.T. Zhang, H.-W. Liu, T. Taguchi, Q.-B. Meng, O. Sato, A. Fujishima, Solar Energy Materials and Solar Cells, 81 (2004) 197-203.
  91. [76] Y. Alderazi, J. Yang, M. Teleb, J. Chang, A. Awad, J. Frey, L. Restrepo, Neurology, 74 (2010) A446-A446.
  92. [77] J. Nei de Freitas, A.F. Nogueira, M.-A. De Paoli, Journal of Materials Chemistry, 19 (2009) 5279-5294.
  93. [78] P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Gratzel, Nat Mater, 2 (2003) 498-498.
  94. [80] M. Shaheer Akhtar, J.-M. Chun, O.B. Yang, Electrochemistry Communications, 9 (2007) 2833-2837.
  95. [81] M.S. Kang, K.-S. Ahn, J.-W. Lee, Journal of Power Sources, 180 (2008) 896-901.
  96. [82] R.H. Lee, J.K. Liu, J.-H. Ho, J.W. Chang, B.T. Liu, H.-J. Wang, R.-J. Jeng, Polymer International, 60 (2011) 483-492.
  97. [83] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M.A. Hendrickson, Electrochimica Acta, 46 (2001) 2457-2461.
  98. [84] J. Zhang, H. Han, S. Wu, S. Xu, Y. Yang, C. Zhou, X. Zhao, Solid State Ionics, 178 (2007) 1595-1601.
  99. [86] Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, T. Zhang, Polymer Composites, 30 (2009) 1687-1692.
  100. [87] M. Shaheer Akhtar, J.-G. Park, H.-C. Lee, S.K. Lee, O.B. Yang, Electrochimica Acta, 55 (2010) 2418-2423.
  101. [88] Y. Alivov, Z.Y. Fan, Applied Physics Letters, 95 (2009).
  102. [89] W.J. Chou, C.C. Wang, C.Y. Chen, Polymer Degradation and Stability, 93 (2008) 745-752.
  103. [90] H. Tantang, A.K.K. Kyaw, Y. Zhao, M.B. Chan-Park, A.I.Y. Tok, Z. Hu, L.-J. Li, X.W. Sun, Q. Zhang, Chemistry - An Asian Journal, 7 (2012) 541-545.
  104. [91] C.J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, Journal of the American Ceramic Society, 80 (1997) 3157-3171.
  105. [93] J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. B, 108 (2004) 8106-8118.
  106. [94] F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo, A. Hagfeldt, Solar Energy Materials and Solar Cells, 87 (2005) 117-131.
  107. [96] D. Vanmaekelbergh, P.E. de Jongh, The Journal of Physical Chemistry B, 103 (1999) 747-750.
  108. [97] H.O. Finklea, Elsevier, New York, (1988).
  109. [98] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, P. Bogdanoff, A. Zaban, Journal of the Electrochemical Society, 150 (2003) E293-E298.
  110. [99] S.L. Kim, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, Journal of Applied Electrochemistry, 36 (2006) 1433-1439.
  111. [100] S.-R. Jang, R. Vittal, K.-J. Kim, Langmuir, 20 (2004) 9807-9810.
  112. [103] S.N. Frank, A.J. Bard, Journal of the American Chemical Society, 97 (1975) 7427-7433.
  113. [105] S.H. Kang, J.Y. Kim, Y.K. Kim, Y.E. Sung, Journal of Photochemistry and Photobiology A: Chemistry, 186 (2007) 234-241.
  114. [106] S.H. Kang, J.Y. Kim, Y.E. Sung, Electrochimica Acta, 52 (2007) 5242-5250.
  115. [107] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Grätzel, The Journal of Physical Chemistry C, 111 (2007) 6550-6560.
  116. [109] R. Bajpai, S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J. Rafiee, N. Koratkar, D.S. Misra, Acs Applied Materials & Interfaces, 3 (2011) 3884-3889.
  117. [110] S. Ameen, M.S. Akhtar, G.S. Kim, Y.S. Kim, O.B. Yang, H.S. Shin, Journal of Alloys and Compounds, 487 (2009) 382-386.
  118. [111] G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, The Journal of Physical Chemistry B, 101 (1997) 8141-8155.
  119. [112] K. Zhu, N.R. Neale, A. Miedaner, A.J. Frank, Nano Letters, 7 (2006) 69-74.
  120. [114] S. Ardizzone, G. Cappelletti, A. Minguzzi, S. Rondinini, A. Vertova, Journal of Electroanalytical Chemistry, 621 (2008) 185-197.
  121. [116] J.W.G. Wilder, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature, 391 (1998) 59-62.
  122. [117] A.B. Kaiser, G. Düsberg, S. Roth, Physical Review B, 57 (1998) 1418.
  123. [118] S.P.S. Porto, P.A. Fleury, T.C. Damen, Physical Review, 154 (1967) 522.
  124. [119] S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.-H. Han, S. Ogale, Acs Applied Materials & Interfaces, 1 (2009) 2030-2035.
  125. [122] W. Zhou, K. Pan, C. Tian, Y. Qu, L. Zhang, C.-C. Sun, H. Fu, Journal of Photochemistry and Photobiology A: Chemistry, 207 (2009) 306-310.
  126. [124] Y. Dror, W. Salalha, R.L. Khalfin, Y. Cohen, A.L. Yarin, E. Zussman, Langmuir, 19 (2003) 7012-7020.
  127. [125] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, Electrochimica Acta, 47 (2002) 4213-4225.