Title

PdNi/C氧化觸媒之製備及其在甲醇鹼性溶液中之電化學行為

Translated Titles

Preparation of PdNi/C Oxidation Catalysts and their Electrochemical Behaviors in Alkaline Methanol Solution

DOI

10.6844/NCKU.2011.00434

Authors

邱信融

Key Words

鹼性 ; 直接甲醇燃料電池 ; 鈀鎳合金 ; 氧化觸媒 ; 介面活性劑 ; alkaline ; direct methanol fuel cell ; PdNi alloy ; oxidation catalysts ; surfactant

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

楊明長

Content Language

繁體中文

Chinese Abstract

本研究所製備的鹼性直接甲醇燃料電池陽極觸媒,以鈀為觸媒的主要元素,鎳為第二金屬元素,利用含浸還原法製備PdNi/C觸媒,探討製備時pH值、H2PdCl4/NiSO4比例、十二烷基磺酸鈉(SDS)濃度及碳擔體對觸媒性質以及活性的影響。以TEM、XRD、AA觀察各種製備變數下的觸媒型態與組成,並利用循環伏安法、線性掃描法及交流阻抗分析研究此觸媒在鹼性甲醇水溶液中的電化學行為。   經由TEM觀察,以44.5 mM SDS,在pH 10,溶液中Pd/Ni原子比6:6,在XC-72碳擔體上製備之電極觸媒,金屬顆粒具有良好的分散性;透過AA分析,此SDS濃度下鎳金屬會有部分流失於浸鍍液中。改以pH 12製備之電極觸媒Ni組成為7.0 wt. %,與含浸液中組成幾乎相同。由XRD的結果發現,改變Pd/Ni原子比例會影響合金觸媒的粒徑,Pd/Ni原子比例為6:0的金屬觸媒粒徑3.99 nm,原子比例為6:18製備的金屬觸媒粒徑縮小為1.90 nm。   透過電化學分析,在pH 10、Pd/Ni 原子比6:6,11.3 mM SDS製備擔載於XC-72之電極觸媒的電化學活性面積為247.0 mC/mg Pd,在鹼性甲醇水溶液中,當電位-0.1 V(vs. Ag/AgCl)時的甲醇氧化質量活性達235.9 mA/mg Pd。以44.5 mM SDS,PdNi原子比例6:6,pH 12,擔載於XC-72之電極觸媒的電化學活性面積為283.7 mC/mg Pd,在-0.1 V(vs. Ag/AgCl)下質量活性為234.9 mA/mg Pd。以pH 10,44.5 mM SDS,擔載於XC-72上,Pd/Ni原子比例為6:0到6:18間所得電極觸媒之電化學活性面積最高為341.4 mC/mg Pd (Pd:Ni = 6:3)。在-0.1 V (vs. Ag/AgCl) 下,比活性最高為1.35 mA/mC (Pd:Ni = 6:18)。

English Abstract

In this research, Pd is used as the major catalyst metal with Ni modification. PdNi/C catalyst were prepared by impregnation reduction method. The effect of pH, H2PdCl4/NiSO4 ratio, sodium dodecyl sulfate (SDS) concentration and type of carbon support on catalyst properties were investigated. TEM, XRD, and AA were used to study the catalyst properties and composition under various preparation condition. The electrochemical behaviors of these catalysts in alkaline methanol solution were also studied with cyclic voltammetry, linear sweep voltammetry and AC impedance. From TEM, the electrode catalyst prepared with 44.5 mM SDS, pH 10, Pd/Ni atomic ratio 6:6, reducing on XC-72 carbon support has a good dispersibility. From AA result, when the concentration of SDS in catalyst preparation solution is higher than 44.5 mM, the Ni would be partially dissolved. Increasing the pH of the preparation solution, the Ni composition of electrode catalyst is 7.0 wt. %, which mean most Ni was reduced. The XRD pattern showed that the addition of Ni could limit the grain sizes of the alloy catalysts. The Pd/C catalyst had a grain size of 3.99 nm while the grain size of PdNi/C (Pd:Ni = 6:18) was 1.9nm. The electrochemical analysis showed that electrode catalyst prepared from 11.3 mM SDS, pH 10, Pd/Ni atomic ratio 6:6, reducing on XC-72 carbon support gave electrochemical surface area (ECSA) of 247.0 mC/mg Pd, and mass activity of 235.9 mA/mg Pd at -0.1 V (vs. Ag/AgCl) in alkaline methanol solution. The electrode catalyst prepared from 44.5 mM SDS, pH 12, Pd/Ni atomic ratio 6:6, reducing on XC-72 carbon support gave ECSA of 283.7 mC/mg Pd, and mass activity of Methanol oxidation is 234.9 mA/mg Pd at -0.1 V (vs. Ag/AgCl). The electrode catalysts prepared from 44.5 mM SDS, pH 10, Pd/Ni atomic ratio 6:0 to 6:18 on XC-72 gave a highest ECSA of 341.4 mC/mg Pd (at ratio of 6:3), and a highest specific activity of 1.35 mA/mC at -0.1 V (vs. Ag/AgCl).

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. 2.K. Scott , E. Yu, G. Vlachogiannopoulos , M. Shivare , N. Duteanu, “Performance of a direct methanol alkaline membrane fuel cell”, Journal of Power Sources, Vol. 175, pp. 452–457 (2008)
    連結:
  2. 4.J. Giner, C. Hunter, “Model of a Hydrogen-Air Fuel Cell with Alkaline Electrolyte”, J. Electrochem. Soc., Vol. 116, pp. 1124-1130 (1969).
    連結:
  3. 6.O. Stonehart, “Development of Alloy Electrocatalysts for Phophoric Acid Fuel Cells (PAFC)”, J. Appl. Electrochem., Vol. 22, pp. 995-1001 (1992).
    連結:
  4. 7.E. A. Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochem. Soc., Vol. 135, pp. 2209-2214 (1998).
    連結:
  5. 9.K. Scott, W. M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, Vol. 79, pp. 43-59 (1999).
    連結:
  6. 10.A. Biyikoglu, “Review of Proton Exchange Membrane Fuel Cell Models”, Int. J. Hydrogen Energy, Vol. 30, pp. 1181-1212 (1998).
    連結:
  7. 11.U. B. Demirci, “Direct liquid-feed fuel cells: thermodynamic and environmental concerns”, J. Power sources, Vol. 169, pp. 239-246 (2007).
    連結:
  8. 17.Z. G. Shao, X. Wang, I. M. Hsing, “Composite Nafion/polyvinyl Alcohol Membranes for the Direct Methanol Fuel Cell”, J. Membr. Sci., Vol. 210, pp. 147-153 (2002).
    連結:
  9. 18.Z. G. Shao, X. Wang, I. M. Hsing, “Nafion Membrane Coated with Sulfonated Polyvinyl alcohol.-Nafion Film for Direct Methanol Fuel Cells”, Electrochem. and Solid-State Letters, Vol. 5, pp. 185-187 (2002).
    連結:
  10. 19.Y. M. Kim, K. W. Park, J. H. Choi, I. S. Park, Y. E. Sung, “A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration Methanol Fuel in DMFC”, Electrochem. Commun., Vol. 5, pp. 571-574 (2003).
    連結:
  11. 20.H. L. Lin, T. L. Yu, L. N. Huang, L. C. Chen, K. S. Shen, G. B. Jung, “Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications”, J. Power Sources, Vol. 150, pp. 11-19 (2005).
    連結:
  12. 21.C. T Robert, “Investigations of conductivity in FEP-based radiation-grafted alkaline anion-exchange membranes”, SOLID STATE IONICS , Vol. 176 , pp. 585-597 (2005).
    連結:
  13. 22.N. Duteanu, “A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell”, J Appl Electrochem, Vol. 37, pp. 1085–1091 (2004).
    連結:
  14. 23.Lei Li, Yuxin Wang, “Quaternized polyethersulfone Cardo anion exchange membranes for direct methanol alkaline fuel cells”, Journal of Membrane Science, Vol.262, pp. 1-4 (2005).
    連結:
  15. 24.Bijay P. Tripathi, Mahendra Kumar, Vinod K. Shahi, “Organic-inorganic hybrid alkaline membranes by epoxide ring opening for direct methanol fuel cell applications”, Journal of Membrane Science , Vol. 360, pp. 90–101 (2010).
    連結:
  16. 25.Yang Wang, Li Li, Ling Hu, Lin Zhuang, Junto Lu, Boqing Xu, “A fwsibility analysis for alkaline membrane direct methanol fuel cell:thermodynamic disadvantages versus kinetic advantages”, Electrochemistry Communications, Vol.5, pp. 662-666 (2003).
    連結:
  17. 26.T.J. Schmidt, H.A. Gasteiger, R.J. Behm,” Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst”, Electrochemistry Communications, Vol.1, pp.1-4 (1999).
    連結:
  18. 27.Y. Kiros, S. Schwartz, “Long-term hydrogen oxidation catalysts in alkaline fuel cells”, Journal of Power Sources, Vol.87, pp.101-105 (1999).
    連結:
  19. 28.Javier Hernandez, Jose Solla-Gullon, “Methanol oxidation on gold nanoparticles in alkaline media: Unusual electrocatalytic activity”, Electrochimica Acta, Vol.52, pp. 1662-1669 (2006).
    連結:
  20. 30.T. Frelink, W. Visscher, J.A.R. van Veen, “On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt”, Surface Science, Vol. 335, pp. 353-360, (1995).
    連結:
  21. 31.S. Ha, R. Larsen, Y. Zhu and R.I. Masel, “Direct formic acid fuel cells with 600 mA cm−2 at 0.4 V and 22 °C”, Fuel Cells, Vol. 4, pp. 337-343, (2004).
    連結:
  22. 32.S. Ha, R. Larsen, R.I. Masel, “Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells”, J. Power Sources, vol. 144, pp. 28-34, (2005)
    連結:
  23. 33.L. Demarconnay, C. Coutanceau, J.M. Léger, “Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol”, Electrochimica Acta, Vol.49, pp.4513-4521 (2004).
    連結:
  24. 34.Y. F. Yang, Y. H. Zhou, C. S. Cha, “Electrochemical reduction of oxygen on small palladium particles supported on carbon in alkaline solution”, Electrochimica Acta, Vol.40, pp.2759-2586 (1995).
    連結:
  25. 35.J. Prakash, H. Joachin, “Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution”, Electrochimica Acta, Vol.45, pp.2289-2296 (2000).
    連結:
  26. 36.S. Lj. Gojkovic, S. Gupta, R.F. Savinell, “Heat-treated iron (III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction Part II. Kinetics of oxygen reduction”, Journal of Electroanalytical Chemistry, Vol.462, pp. 63-72 (1999).
    連結:
  27. 37.N. Heller-Ling, M. Prestatt, “Oxygen electroreduction mechanism at thin NixCo3-xO4 spine1 films in a double electrode flow cell (DCEFC)”, Electrochimica Acta, Vol.42, pp. 197-202 (1997).
    連結:
  28. 38.Y. Hu, Y. V, “Rotating ring-disk studies of oxidized nickel hydrous oxide:oxygen evolution and pseudo-capacitance”, Journal of Electroanalytical Chemistry, Vol.468, pp. 64-69 (1999).
    連結:
  29. 39.Bretislav Klapste, Jirı Vondrak, Jana Velicka, “MnOx/C composites as electrode materials II. Reduction of oxygen on bifunctional catalysts based on manganese oxides”, Electrochimica Acta, Vol.47, pp. 2365-2369 (2002).
    連結:
  30. 40.J. Yang, J. J. Xu, “Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions”, Electrochemistry Communications, Vol.5, pp.306-311 (2003).
    連結:
  31. 41.L. Mao, D. Zhang, “Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts”, Electrochimica Acta, Vol.48, pp. 1015-1021 (2003).
    連結:
  32. 42.A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of A Carbon-supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells”, J. Power Sources, Vol. 55, pp. 159-166 (1995).
    連結:
  33. 43.Y. Takasu, T. Fujiwara, Y. Murakami, K. Sasaki, M. Oguri, T. Asaki, W. Sugimotoa, “Effect of Structure of Carbon-Supported PtRu Electrocatalysts on the Electrochemical Oxidation of Methanol”, Journal of The Electrochemical Society, Vol. 147, pp. 4421-4427 (2000).
    連結:
  34. 44.Yanchun Zhao, Lu Zhan, Jianniao Tian, “Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–graphene in alkaline medium”, Electrochimica Acta, Vol. 56, pp. 1967–1972 (2011).
    連結:
  35. 45.Masahiro Watanabe, Makoto Uchida, Satoshi Motoo, “Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol”, Journal of Electroanalytical Chemistry, Vol. 229, pp. 395-406 (1987).
    連結:
  36. 46.Szu-Han Wu, Dong-Hwang Chen, “Preparation and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol”, Jounal of Colloid and Interface Science, Vol. 259, pp. 282-286 (2003).
    連結:
  37. 47.Qian Jiang, Luhua Jiang, “A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media”, Catalysis Communications, Vol. 12, pp. 67-70 (2010).
    連結:
  38. 48.Naoki Toshima, Tetsu Yonezawa, “Bimetallic nanoparticles - novel materials for chemical and physical applications”, NEW JOURNAL OF CHEMISTRY, Vol. 22, pp. 1179-1201 (1998)
    連結:
  39. 49.Louis D. Rampino, F. F. Nord, “Applicability of Palladium Synthetic High Polymer Catalysts”, J. Am. Chem. Soc.,Vol. 63, pp. 3268 (1941)
    連結:
  40. 50.Louis D. Rampino, F. F. Nord, “Preparation of Palladium and Platinum Synthetic High Polymer Catalysts and the Relationship between Particle Size and Rate of Hydrogenation”, J. Am. Chem. Soc.,Vol. 63, pp. 2745-2749 (1941)
    連結:
  41. 51.Kevin E. Kavanagh, F. F. Nord, “Systematic Studies on Palladium-Synthetic High Polymer Catalysts”, J. Am. Chem. Soc.,Vol. 65, pp. 2121-2125 (1943)
    連結:
  42. 52.Hideaki Bunazawa, Yohtaro Yamazaki, “Ultrasonic preparation and evaluation of non-platinum catalysts for alkaline direct methanol fuel cells”, J. Power Sources, vol. 190, pp. 210-215, (2009)
    連結:
  43. 53.Faliang Cheng, Hong Wang, “Electrodeposited fabrication of highly ordered Pd nanowire arrays for alcohol elcctrooxidation”, Electrochem. Commun., Vol. 10, pp. 798-801 (2008).
    連結:
  44. 54.Zhelin Liyu, Bo Zhao, “Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media”, J. Colloid and Interface science, Vol. 351, pp. 233-238 (2010).
    連結:
  45. 55.Yanchun Zhao, Lu Zhan, “Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole–grapheme in alkaline medium”, Electrochimica Acta, Vol.56, pp.1967-1972 (2011).
    連結:
  46. 56.R.N. Singh, A. Singh, “Influence of the nature of conductive support on the electrocatalytic activity of electrodeposited Ni films towards methanol oxidation in 1 M KOH”, Int. J. Hydrogen Energy, Vol. 33, pp. 6878-6885 (2008).
    連結:
  47. 57.S. J. Ewing, R. Lan, “Preparation of Dendritic Nano-Sized Nickel for use as Anode Material in an Alkaline Membrane Fuel Cell”, Fuel Cells, Vol.10, pp. 72-76 (2010).
    連結:
  48. 58.K. L. Nagashree, M. F. Ahmed, “Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium”, J. Solid state Electrochem, Vol.14, pp.2307-2320 (2010).
    連結:
  49. 59.Changwei Xu, Yonghong Hu, “Ni hollow spheres as catalysts for methanol and ethanol electrooxidation”, Electrochem. Commun., Vol. 9, pp. 2009-2012 (2007).
    連結:
  50. 60.R.M. Abdel Hameed, K.M. El-Khatib, “Ni-P and Ni-Cu-P modified carbon catalysts for methanol electro-oxidation in KOH solution”, Int. J. Hydrogen Energy, Vol. 35, pp. 2517-2529 (2010).
    連結:
  51. 61.Yanchun Zhao, Lu Zhan, Jianniao Tian, Sulian Nie , Zhen Ning, “MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media”, Int. J. Hydrogen Energy, Vol. 35, pp. 10522-15026 (2010).
    連結:
  52. 62.Yi Wang, Zhao Min Sheng, “Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media ”, Int. J. Hydrogen Energy, Vol. 35, pp. 10087-10093 (2010).
    連結:
  53. 63.R. N. Singh, A. Singh, Anindita, “Electrocatalytic activities of binary and ternary composite electrodes of Pd, nanocarbon and Ni for electro-oxidation of methanol in alkaline medium ”, J. Solid state Electrochem, Vol.13, pp.1259-1265 (2009).
    連結:
  54. 64.R. N. Singh, A. Singh, Anindita, “Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH”, Int. J. Hydrogen Energy, Vol. 34, pp. 2052-2057 (2009).
    連結:
  55. 65.Enrico Verlato, Sandro Cattarin, “Preparation of catalytic anodes for methanol oxidation by spontaneous deposition of Pd onto porous Ni or porous Co”Electrochem. Commun., Vol. 5, pp. 571-574 (2003).
    連結:
  56. 66.H. Zhao, L. Li, J. Yang and Y. Zhang, “Co@Pt–Ru core-shell nanoparticles supported on multiwalled carbon nanotube for methanol oxidation”, Electrochem. Commun., Vol. 10, pp. 1527-1529 (2008).
    連結:
  57. 67.M. Shao, K. Sasaki, N.S. Marinkovic, L. Zhang, R.R. Adzic, “Preparation and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports”, Electrochem. Commun., Vol. 9, pp. 2848-2853 (2007).
    連結:
  58. 68.Y. Zhao, Y. Cai, J. Tian, H. Lan, “Facile preparation and excellent catalytic performance of PtRuPd hollow spheres nanoelectrocatalysts”, Mater Chem Phys, Vol.115, pp. 831-834 (2009).
    連結:
  59. 69.Yanchun Zhao, Xiulin Yang, “Methanol electro-oxidation on Ni@Pd core-shell nanoparticles supported on multi-walled carbon nanotubes in alkaline media”, Int. J. Hydrogen Energy, Vol. 35, pp. 3249-3257 (2010).
    連結:
  60. 70.Umit B. Demirci, “Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells”, J. Power Sources, Vol. 173, pp. 11-18 (2007).
    連結:
  61. 72.B. Hammer, J.K. Nørskov, “Electronic factors determining the reactivity of metal surfaces”, Surface Science, Vol. 343, pp. 211-220 (1995).
    連結:
  62. 73.Jeff Greeley, Jens K. Nørskov, “A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys”, Surface Science, Vol. 592, pp. 104-111 (2005).
    連結:
  63. 74.Nenad M., Hubert A., “Electro-oxidation mechanism of methanol and formic acid on Pt-Ru alloy surfaces”, Electrochimica Acta, Vol. 40, pp. 91-98 (1995).
    連結:
  64. 75.Claude Lamy, Alexansdre Lima, “Recent advances in the development of direct alcohol fuel cells (DAFC)”, J. Power Sources, Vol. 105, pp. 283-296 (2002).
    連結:
  65. 77.H. Dohle, J. Divisek, R. Jung, “Process engineering of the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 86, pp. 469-477 (2002).
    連結:
  66. 78.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John Wiley & Sons, inc., p. 27 (2001).
    連結:
  67. 79.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John Wiley & Sons, inc., p. 231 (2001).
    連結:
  68. 81.薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文 (2003)
    連結:
  69. 82.Epelboin, I., Gabrelli, C., Keddam, M., Takenouti, H., “The study of passivation process by the electrode impedance analysis”, incomprehensive treatise of electrochemistry, vol. 4, plenum Press, New York, p.151 (1981).
    連結:
  70. 83.Jens T. Muller, Peter M. Urban. ”Impedance studies of direct methanol fuel cell anodes” , Journal of Power Sources, Vol. 84, pp.157 (1999).
    連結:
  71. 84.Yi-Cheng Lin, Xin-Ping Qiu, Wen-Tao Zhu, Guo-Shi Wu, “Impedance studies on mesocarbon microbeads supported Pt-Ru catalytic anode”, Journal of Power Sources, Vol.84, p.157 (1999).
    連結:
  72. 85.K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, “Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140oC”, Journal of The Electrochemical Society, Vol. 149, pp. 256 (2002).
    連結:
  73. 87.A.R. Denton, “Vegard’s law”, Physical Review A (Atomic, Molecular, and Optical Physics), Volume 43, pp. 3161-3164 (1991).
    連結:
  74. 88.Guillermina, “Electronic and magnetic properties of Pd-Ni multilayers: Study using density functional theory”, Journal of Magnetism and Magnetic Materials, Vol. 32, pp. 3478-3482 (2009).
    連結:
  75. 89.李美嬅,“核殼式鈷白金/碳觸媒之製備及其氧氣還原反應特性探討”,私立東海大學化學工程與材料工程學系博士論文 (2008).
    連結:
  76. 90.I. Danne, “Electrocatalytic oxidation of methanol on Ni and NiCu alloy modified glassy carbon electrode”, Int. J. Hydrogen Energy, Vol. 33, pp. 4367-4376 (2008).
    連結:
  77. 91.K. Scott, “A study of the anodic oxidation of methanol on Pt in alkaline solutions”, Journal of Electroanalytical Chemistry, Vol. 547 pp. 17-/24 (2003)
    連結:
  78. 92.賴韋翔,“碳擔體型態及表面處理對直接甲醇燃料電池性能之影響”,國立成功大學化學工程與工程學系碩士論文 (2008).
    連結:
  79. 93.A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, John Wiley & Sons, inc., p. 103 (2001).
    連結:
  80. 94.Y. Zhao, “A new route for electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes. ”, Electrochimica Acta, Vol.52, pp. 5873-5878 (2007)
    連結:
  81. 95.F. Liu, “Template preparation of multisegment PtNi nanorods as methanol electro-oxidation catalysts with adjustable bimetallic pair sites.”, The Journal of Physical chemistry B letters, vol. 108, pp. 17959-17963 (2004).
    連結:
  82. 1.J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 133 (1989).
  83. 3.Frano Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
  84. 5.鄭煜騰,萬瑞霙,林修正,"酸性燃料電池的製成研究",能源季刊,第二十五卷,第四期,161頁 (1995)。
  85. 8.李國霖,"熔融碳酸鹽燃料電池的研發",能源季刊,第二十四卷,第四期,57頁 (1997)。
  86. 12.A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 15-16 (1989).
  87. 13.鄭煜騰,鄭耀宗,"質子交換膜型燃料電池的製造技術",能源季刊,第二十七卷,第二期,118頁 (1997)。
  88. 14.A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 32-37 (1989).
  89. 15.楊志忠,林頌恩,韋文誠,"燃料電池的發展現況",科學發展,367期,30-33頁 (2003)。
  90. 16.鄭耀宗,徐耀昇,’’燃料電池技術進展的現況分析’’,節約能源論文發表會論文專輯,409 (1999)
  91. 29.H. Wang, T. Loffler, H. Baltruchat, “Formation of intermediates during methanol oxidation: A quantitative DEMS study”, Journal of Applied Electrochemistry, vol. 31, pp.759-765, (2001).
  92. 71.A. Ruban, B. Hammer, P. Stoltze, H.L. Skriver, J.K. Nørskov, “Surface electronic structure and reactivity of transition and noble metals”, Journal of Molecular Catalysis A: Chemical, Vol. 115, pp. 421–429 (1999).
  93. 76."燃料電池商機無窮,國內廠商加速發展",中華民國招商網, http://dois.pristine.com.tw/zh-tw/news/200610/2006101101.html
  94. 80.林賜岱,“直接甲醇燃料電池陽極反應之研究",國立台灣科技大學化學工程系碩士論文 (2002)
  95. 86.B. Beden, J.M. Leger, C. Lamy, “Modern Aspects of Electrochemistry”, vol. 22 (chapter 2), Plenum Press, New York, pp. 92 (1992) .
  96. 96.莊萬發,”無電解鍍金-化學電鍍技術”,復漢出版社,32頁,民國85年。