Title

水蒸氣在帶高電量TiO2奈米微粒上之非均勻相核凝現象

Translated Titles

Heterogeneous nucleation of water vapor on highly charged nanoparticles of TiO2

Authors

徐文哲

Key Words

非均勻相核凝 ; 雲霧室 ; 高電荷奈米微粒 ; 凝結電荷放大系統 ; 水 ; 二氧化鈦 ; heterogeneous nucleation ; flow cloud chamber ; highly charged nanoparticles ; condensation charge magnification system(CCMS) ; water ; TiO2

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

陳進成

Content Language

繁體中文

Chinese Abstract

本研究的目的為探討水蒸氣在高電荷量TiO2奈米微粒上的非均勻核凝現象。首先,利用電噴霧法製備二氧化鈦(TiO2)奈米微粒,配合凝結電荷放大系統,分別讓單一粒徑15nm帶1-3個單位負電荷;單一粒徑20nm與25nm帶1-6個單位負電荷,接著以流動型雲霧室來探討帶高負電荷TiO2奈米微粒在水蒸氣中所引起之電荷效應與粒徑效應。 結果顯示,在粒徑效應方面,當所帶電荷量低時,臨界過飽和度的值隨粒徑下降而上升,在電荷效應方面,隨電荷量提高,臨界過飽和度有下降的趨勢,粒徑越小下降幅度越明顯,在本實驗中以15nm下降幅度最為明顯,25nm在六個單位負電荷內則未有明顯的電荷效應存在。本實驗所得結果在定性上與理論相符,定量上則有一定的差距。

English Abstract

In the study, the heterogeneous nucleation of water vapor on highly charged nanoparticles of TiO2 was examined. An electrospray aerosol generator was used to generate TiO2 nanoparticles and highly charged nanoparticles were prepared by a condensation charge magnification system. The maximum charges carried by 15nm nanoparticles were three negative unit charges, and for 20 nm and 25nm particles, each can carry up to six negative unit charges. The effects of size and charge on the condensation of a supersaturated water vapor on highly charged monodisperse nanoparticles of TiO2 were investigated in a flow cloud chamber. The results show the that the critical supersaturation(Scr) increased as particle size decreased for those particles each carry small amount of charges. However obvious charged effect was observed for highly charged particles. The charge effect decreased as the particle size increased. For 15 nm TiO2 particles, an obvious charge effect on Scr is observed, and there is only slightly charge effect for 25nm particles each carries charge from one to six units. Qualitatively, the size effect and charged effect are reasonable agreement with that predicted by Fletcher’s version of Volmer’s theory of heterogeneous nucleation but quantitatively there is discrepancy between the expected result and theory’s prediction.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. 1.V. Abdelsayed and M. S. El-Shall, “Vapor phase nucleation on neutral and charged nanoparticles: Condensation of supersaturated trifluoroethanol on Mg nanoparticles”, Journal of Chemical Physics , 126(2), 265(2007).
    連結:
  2. 2.M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V. -M. Kerminen, W. Birmili and P. H. McMurry, “Formation and growth rates of ultrafine atmospheric particles: a review of observations”, Journal of Aerosol Science, v.35(2), 143-176(2004)
    連結:
  3. 3.V.V. Smirnov, A.F. Smirnov.V. V V., “Nature and evolution of ultrafine aerosol particles in the atmosphere’’, Atmospheric and Oceanic Physics, v.42 (6),663- 687(2006)
    連結:
  4. 4.V.Y. Smorodin and P.K. Hopke, “Condensation activation and nucleation on heterogeneous aerosol nanoparticles’’ ,Journal of Chemical Physics 108(26),9147- 9157 (1995).
    連結:
  5. 5.M. Vana, E. Tamm, U. Hõrrak, A. Mirme, H. Tammet, L. Laakso, P.P. Aalto and M. Kulmala, “Charging state of atmospheric nanoparticles during the nucleation burst events’’, Atmospheric Research, 82(3-4), 536- 546 (2006).
    連結:
  6. 7.Fletcher, N.H., “Physics of Rainclouds”, 1st Ed., Cambridge University Press, p.390(1962).
    連結:
  7. 8.Chin-Cheng Chen and Chun-Ju Tao, “ Condensation of supersaturated water vapor on submicrometer particles of SiO2 and TiO2”, Journal of Chemical Physics,112,15(2000).
    連結:
  8. 11.P. Wette and H. J. Schöpe, “Nucleation kinetics in deionized charged colloidal model systems: A quantitative studyby means of classical nucleation theory” , Physical Review E,75(5) part1(2007).
    連結:
  9. 12.Z. G. Kusaka, Wang and J. H. Senjeld, “Ion-induced nucleation II. polarizable multipolar molecules”, Journal of Chemical Physics,103(20), 8993-9009 (1995).
    連結:
  10. 13.C. T. R. Wilson, “Condensation of water vapor in the presence of dustfree air and other gases”, Philosophical Transactions 189(A), 265(1897).
    連結:
  11. 15.J. Suh, B. Han, K. Okuyama and M. Choi, “Highly charging of nanoparticles through electrospray of nanoparticle suspension” ,Journal of Colloid and Interface Science,287(1),135-140(2005).
    連結:
  12. 16.J. Suh, B. Han, K. Okuyama and M. Choi,“A method for enhanced charging of nanoparticles via condensation magnification”, Journal of Aerosol Science, 36(10),1183-1193(2005).
    連結:
  13. 17.D.S. Kim, D.S. Lee, C.G. Woo, M. Choi and A.F. Kim, , “Control of nanoparticle charge via condensation magnificatio” ,Journal of Aerosol Science, 37(12),1876-1882(2006).
    連結:
  14. 18.陳泓旭,“正丁醇與水在帶電奈米微粒上之非均勻相核凝” ,碩士論文, 國立成功大學化工系(2002)。
    連結:
  15. 19.鄭秀津, “水蒸氣在帶電與中性SiO2不可溶奈米微粒上之非均勻相核凝” ,碩士論文, 國立成功大學化工系(2002)。
    連結:
  16. 20.陳彥宇, “電噴霧法製備SiO2奈米微粒及正丁醇蒸氣在微粒上之非均勻相核凝” ,碩士論文, 國立成功大學化工系(2003)。
    連結:
  17. 21.林佳德, “正丁醇蒸氣在無機TiO2與有機甘露糖奈米微粒上之非均勻相核凝” ,碩士論文, 國立成功大學化工系(2004)。
    連結:
  18. 22.沈于安, “正丁醇蒸氣在SiO2(10nm-6nm)與鼠李糖(25nm-8nm)微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2005)。
    連結:
  19. 23.劉旂甫, “水及正丁醇蒸氣在TiO2與甘露糖帶電與中性微粒上之非均勻相核凝” ,碩士論文, 國立成功大學化工系(2006)。
    連結:
  20. 24.李傳傑, “電噴霧法製備SiO2(6-10nm)、葡萄糖(8-30nm)、味精(8-30nm)奈米微粒及水蒸氣在帶電與中性微粒上非均勻相核凝之研究”, 碩士論文, 國立成功大學化工系(2007)。
    連結:
  21. 25.李先偉, “正壬烷蒸氣在帶電及中性SiO2(6nm~30nm)及甘露糖(8nm~30nm)奈米微粒上之非均勻相核凝現象” ,碩士論文,國立成功大學化工系(2008)。
    連結:
  22. 29.C. C. Chen and H. C. Cheng , “Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2” , Journal of Chemical Physics,126, 034701(2007).
    連結:
  23. 30.周明翰,“水蒸氣在帶高電量SiO2奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2009)。
    連結:
  24. 31.陳彥伯,“正丁醇蒸氣在帶高電量SiO2及TiO2奈米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(2010)。
    連結:
  25. 32.J. R. Llompart and J. Fernandez De La Mora, “Generation of Monodisperse droplets 0.3 to 4μm in Diameter from Electrified Cone-jets of Highly Conducting and Viscous Liquids”, Journal of Aerosol Science , 1093(1994)
    連結:
  26. 33.M. Cloupeau and B. Prunet-Foch, “Electrohydrodynamic Spraying Functioning Modes: a Critical Review”, Journal of Aerosol Science,25, 1021(1994).
    連結:
  27. 34.Y. Osamu, K. Tomonori, M. Akira, “Properties of droplet formation made by cone jet using a novel capillary with an external electrode” ,Journal of Electrostatics, 64 634-638(2006).
    連結:
  28. 35.Christopher J. Hogan Jr, Pratim Biswas, “Narrow size distribution nanoparticle production by electrospray processing of ferritin” ,Aerosol Science ,39,432 – 440 (2008).
    連結:
  29. 36.I. G. Loscertales,A. Barrero,I. Guerrero R. Cortijo, M. Marquez, et al, “Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets”, science,295,1695-1698(2002).
    連結:
  30. 37.Michael G. Ikonomou, Arthur T. Blades, and Paul Kebarle, “Electrospray-Ion Spray: A Comparison of Mechanisms and Performance”, Analytical Chemistry,63,1989-1998(1991).
    連結:
  31. 38.A. Jaworek and A. Krupa, “Classification of the modes of EHD spraying” ,Journal of Aerosol Science, 30(7), 873-893(1999).
    連結:
  32. 39.R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijinissen and B. Scarlett, “Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet” , Journal of Aerosol Science ,30(7),823-849(1999).
    連結:
  33. 40.R. P. A. Hartman, D. J. Brunner, D. M. A. Camelot, J. C. M. Marijnissen and B. Scarlett, “Jet Break-up in Electrohydrodynamic Atomization in the Cone-jet Mode” ,Journal of Aerosol Science 31(1),65-95(2000).
    連結:
  34. 42.P. I. a, N. Tippayawong,“Progress in unipolar corona discharger designs for airborne particle charging: A literature review ”, Journal of Electrostatics,67(4) 605-615(2009).
    連結:
  35. 44.W. D. Marra Jr., M. V. Rodrigues, R. G.A. Miranda , M. A.S. Barrozo, J. R. Coury, “The effect of the generation and handling in the acquired electrostatic charge airborne particles ” , Powder Technology,191(3) 299–308 (2009).
    連結:
  36. 45.C. T. R. Wilson, “Condensation of Water Vapour in the Presence of Dust-Free Air and Other Gases”, Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 189, 265-307 (1897).
    連結:
  37. 46.L.B. Loeb, A.F. Kip and A.W. Einarsson, “On the nature of ion sign preference in C. T. R. Wilson cloud chamber condensation experiment”, Journal of Chemical Physics.,6,265(1938).
    連結:
  38. 47.K.C. Russell, “Nucleation on gaseous ions” ,Journal of Chemical Physics, 50,1809(1969).
    連結:
  39. 48.R.J. Good, “Surface entropy and surface orientation of polar liquids” , Journal of Chemical Physics,61,810(1957).
    連結:
  40. 49.J.J. Thomson, “Conduction of Electricity Through Gases,” 3rd. Ed.,v.1 (Cambridge University, Cambridge),pp.320-333.(1928).
    連結:
  41. 50.C.L. Briant and J.JJ. Burton, “Molecular dynamics study of the effects of ions on water microclusters” ,Journal of Chemical Physics , 64, 2888 (1946).
    連結:
  42. 51.S.H. H. Suck, “Change of free energy in heteromolecular nucleation:Electrostatic energy contribution” ,Journal of Chemical Physics,75,5090(1981).
    連結:
  43. 53.I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation nucleation II Polarizable multipolar molecul” ,Journal of Chemical Physics,103, 8993(1995)
    連結:
  44. 54.V.K. LaMer and R. Gruen, “A direct test of Kelvin’s equation connecting vapour pressure and radius of curvature” ,Transactions of the Faraday Society, 48, 410(1952).
    連結:
  45. 56.S. Twomey, “Experiment test of the Volmer Theory of heterogeneous nucleation” ,Journal of Chemical Physics,30,941(1959).
    連結:
  46. 57.J.A. Koutsky, A.G. Walton and E. Baer, “Heterogeneous nucleation of water vapor on high and low energy surface” ,Surface Science,3, 165(1965).
    連結:
  47. 58.N.H. Fletcher, “Size Effect in Heterogeneous Nucleation” ,Journal of Chemical Physics,29,572-576(1958).
    連結:
  48. 59.N.H. Fletcher, “The Physics of Rainclouds’’, 1st Ed., Cambridge University Press, p.390(1969).
    連結:
  49. 60.M. Lazaridis, “The effects of surface diffusion and line tension on the mechanism of heterogeneous nucleation” , Journal of Colloid and Interface Science,155,386(1993).
    連結:
  50. 61.Smorodin, V. Ye., “Mixed aerosol particles as effective ice nucleating systems” , Atmospheric Research.31(1-3),199-233(1994).
    連結:
  51. 62.Smorodin, V. Ye., “On thermohydrodynamic instablities in aerosol hazes (fogs)”, Atmospheric Environment. 31(8), 1239-1247(1997).
    連結:
  52. 63.Smorodin, V. Ye. and Hopke, P. H., “Condensation activation and nucleation on heterogeneous aerosol nanoparticles” ,Journal of Physical Chemistry B 108(26), 9147-9157(2004).
    連結:
  53. 64.Smorodin, V. Ye. and Hopke, P. H., “Relationship of heterogeneous nucleation and condensational growth on aerosol nanoparticles” , Atmospheric Research. 82, 591-604(2006).
    連結:
  54. 66.K. C. Russell, “Nucleation on gaseous ions”, Journal of Chemical Physics,50,1809(1969)
    連結:
  55. 67.J. J. Thomson, “Conductionof Electricity Through Gases”, 3rd Ed., v.1(Cambridge University, Cambridge), p.320(1928)
    連結:
  56. 69.C. C. Chen, L. C. Hung and H. K. Hsu, “Heterogeneous nucleation of water vapor on particles of SiO2, Al2O3, TiO2 and carbon black”, Journal of Colloid and Interface Science,157,465(1993).
    連結:
  57. 70.J. L. Katz and B. J. Ostermier, “Diffusion cloud chamber investigation of homogeneous nucleation”, Journal of Chemical Physics,47,478(1967).
    連結:
  58. 75.C. C. Chen,’Han-Kuan Shu, and Yeun-Kwei Yang, “Nucleation-Assisted Process for the Removal of Fine Aerosol Particles” ,Industrial and Engineering Chemistry Research, 32,1509-1519(1993).
    連結:
  59. 76.J. L. Katz, “Condensation of a Supersaturated Vapor, I. The homogeneous Nucleation of the n-Alkanes”, Journal of Chemical Physics, 52 , 4733 (1970).
    連結:
  60. 77.Gilmore J. Sem, “Design and performance characteristics of three continuous-flow condensation particle counters:a summary”, Atmospheric Research ,62,267–294(2002).
    連結:
  61. 79.Sato.M, Kudo.N and Saito.M., “Surface tension reduction of liquid by applied electric field using vibrating jet method”, Leee Transactions on Industry Applications, 34(2),294-300(1998)
    連結:
  62. 6.A.C. Zettlemoyer, “NUCLEATION”, p.120, (Marcel Dekker, Inc.).
  63. 9.W.C. Hinds, “Aerosol Technology”, (Wiley, New York)(1982).
  64. 10.Sir J. J. Thomson, “Electricity study through gases”, 3rd Ed., p.320-333.
  65. 14.陶君儒, “水蒸氣在SiO2、TiO2、葡萄糖與麩胺酸鈉次微米微粒上之非均勻相核凝” ,博士論文, 國立成功大學化工系(2000)。
  66. 26.黃崇銓, “正丁醇蒸氣在不溶性無機次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1997)。
  67. 27.蔡聞庭, “正丁醇蒸氣在可溶性D-Mannose與L-Rhamnose次微米微粒上之非均勻相核凝”, 碩士論文, 國立成功大學化工系(2000)。
  68. 28.蔡宜哲, “水蒸氣在不溶性次微米微粒上之非均勻相核凝現象”, 碩士論文, 國立成功大學化工系(1996)。
  69. 41.J Reece Roth, “Industrial plasma engineering (I)”, p.253-255,353(1995)
  70. 43.黃政德, “以EHD技術增加LED散熱效率之研究”, 碩士論文, 國立清華大學動力機械工程學系(2005)。
  71. 52.I. Kusaka, Z.G. Wang and J.H. Seinfeld, “Ion-induced nucleation:A density function approach” ,Journal of Chemical Physics,102, 913(1995).
  72. 55.M. Volmer and A. Weber, “Keimbildung in ubersattigten Gebilden” ,Z. Physik. Chem. (Leipzig) 119,227(1926).
  73. 65.W. J. Dunning, “Chemistry of the Solid State”, (Academic Press), NY.(2002).
  74. 68.M. Volmer, “Kinetic der Phasenbildung”, Verlag Th. Steinkopff, Dresden(1939)
  75. 71.許豪仁, “正丁醇蒸氣在味精與乳糖次微米上之非均勻核凝現象”, 碩士論文, 國立成功大學化工系(1997)
  76. 72.Model 3077 Aerosol Neutralizer, TSI company.
  77. 73.Model 3071 A Electrostatic Classifier, TSI company
  78. 74.Model 3080 Electrostatic Classifier Instruction Manual, TSI Inc.(2002)
  79. 78.Model 3934 SMPS (Scanning Mobility Particle Sizer) Instrucion Manual, TSI Inc.