Title

不同鋁含量之氮化鋁鎵/氮化鎵調變摻雜場效電晶體的製作與研究

Translated Titles

Investigation and Fabrication of AlGaN/GaN MODFET with different Al mole fraction

Authors

陳緯守

Key Words

氮化鎵 ; 調變摻雜場效電晶體 ; 鋁含量 ; 壓電極化 ; GaN ; MODFET ; Al mole fraction ; Piezoelectric polarization

PublicationName

成功大學微電子工程研究所學位論文

Volume or Term/Year and Month of Publication

2003年

Academic Degree Category

碩士

Advisor

蘇炎坤;張守進

Content Language

英文

Chinese Abstract

本論文中,我們在相同結構的氮化鋁鎵/氮化鎵調變摻雜場效電晶體中,設計並且成功製作出0.22、0.26、0.32、0.36四種不同鋁含量之氮化鋁鎵層的電晶體。在直流分析方面,我們得到0.36鋁含量之氮化鋁鎵層的電晶體元件擁有最高二維電子海之片載子濃度為1.21x1013cm-2、最高蕭基接面能障高度為1.37eV,及二維電子海最靠近表面的深度為189Å的特性。而0.32鋁含量之氮化鋁鎵層的電晶體元件擁有最高汲極電流為640mA/mm,及最高轉導為165mS/mm。在高頻分析部分,我們以8510網路分析儀得到0.32鋁含量之氮化鋁鎵層的電晶體元件擁有最高的截止頻率為3.6GHz,及最高的最大共振頻率為5.4GHz。 另外,我們以禁止能隙、不連續導電帶、自發極化現象,及壓電極化現象的理論基礎,加以解釋氮化鋁鎵/氮化鎵調變摻雜場效電晶體在不同鋁含量之氮化鋁鎵層的情形下之直流和高頻特性。而晶格不匹配造成氮化鋁鎵/氮化鎵接面應力形變分解,進而影響壓電極化效應的現象也有所討論。並且以量子力學理論來探討在不同鋁含量之氮化鋁鎵層的電晶體中,二維電子海位置改變的原因。

English Abstract

In this thesis, we had successfully designed and fabricated the AlGaN/GaN MODFETs with different Al mole fraction in AlGaN layers. The device structures are the same except for AlGaN layers that supply and induce carriers. The Al alloy composition of the AlGaN layers is 0.22, 0.26, 0.32, and 0.36, respectively. At DC analysis section, we obtain that for x=0.36, the maximum carrier sheet concentration of 2-DEG is 1.21x1013cm-2, the maximum barrier height of Schottky contact is 1.37eV, and the 2-DEG location is the closest to the surface and has a depth of 189Å. The device with Al alloy composition of 0.32 demonstrates optimal DC and RF performances. For x=0.32, we observe that the maximum drain current is 640mA/mm and the maximum transconductance is 165mS/mm. At RF analysis section, we observe that for x=0.32, the maximum cut-off frequency fT is 3.6GHz and the maximum oscillation frequency fmax is 5.4G by HP 8510C network analyzer. In addition, we investigate the theories of forbidden gap, conduction band discontinuity, spontaneous polarization, and piezoelectric polarization to explain the DC and RF performances of the AlGaN/GaN MODFET with different Al mole fraction in AlGaN layer. Further, we also discuss lattice mismatch at AlGaN/GaN interface and related strain relaxation. The tensile strained barrier layer will get relaxed to affect the piezoelectric polarization due to lattice mismatch. And we research the reason why the 2-DEG location will change in the AlGaN/GaN MODFETs with different Al mole fraction in AlGaN layer in quantum mechanics theory.

Topic Category 電機資訊學院 > 微電子工程研究所
工程學 > 電機工程
Reference
  1. Chapter 1
    連結:
  2. [2] R.K.Willardson and A.C.Beer, “Semiconductors and Semimetals Vol.7”, Academic Press, New York, 175-183 (1971).
    連結:
  3. [4] J. H. Edgar, “Properties of Group III Nitrides”, INSPEC, London, (1994).
    連結:
  4. Chapter 5
    連結:
  5. [1] T.Lei, D.Moustakas, J.Graham, Y.He, and J.Berkowitz, J.Appl.Phys. 71 4993 (1992).
  6. [2] P.C.Joh, J.J.Alwan, and J.G. Eden, Thin Solid Film 218 75(1992).
  7. [3] T.Sasaki and T.Matsuoka, J.Appl.Phys. 64 4531 (1988).
  8. [4] P.J.Born and D.S.Robertson, J.Mater.Sci. 15 3003 (1980).
  9. [5] T. Detchprohm, Hamano, K. Hiramatsu, and I. Akasaki, J.Crust.Growth 128 384 (1993).
  10. [6] R.C.Powell, G.A.Tomasch, Y.W.Kim, J.A.Thornton, and J.E.Greene, Mater. Res. Soc. Symp. Proc. 162 525 (1990).
  11. [7] T. Detchprohm, K.Hiramatsu, N.Sawaki, and I.Akasaki, J. Crust.Growth 137 170 (1994).
  12. [8] O.Ambacher, J.Smart, J.R.Shealy, N.G.Weimann, K.Chu, M.Murphy, W.J.Schaff, L.F.Eastman, R.Dimitrov, L.Wittmer, M.Stutzmann, W.Rieger, and J.Hilsenbeck, J.Appl.Phys. 85 3222-3233 (1999).
  13. [9] A.Bykhovski, B.Gelmont, and M.Shur, J.Appl.Phys. 74 6734 (1993).
  14. [10] P.Kozodoy, M.Hansen, S.P.DenBaars, and U.K.Mishra, Appl.Phys.Lett. 74 3681 (1999).
  15. [11] V.Kumar, W.Lu, F.A.Khan, R.Schwindt, A.Kuliev, G.Simin, J.Yang, M.Asif.Khan, and T.Adesida, Electron.Lett. 38 252-253 (2002).
  16. Chapter 2
  17. [1] Gregory S.Marlow, Mukunda B.Das, Solid State Electronics 25 91-94 (1982).
  18. [3] V.Ya.Niskov and G.A.Kuberskii, Sov.Phys.Semicond. 4 1553(1971).
  19. [4] W.G. Bickley, “Bessel Functions”, University Press, Cambridge 220-255 (1960).
  20. [5] S.S.Cohen and G.Sh.Gildenblat, “VLSI Electronics 13 Metal-Semiconductor Contacts and Devices”, Academic Press, Orlando, FL, 115 (1986).
  21. [6] M.Ahmad and B.M.Arora, Silid-State Electron. 35 1441-1445 (1992).
  22. [7] I.Adessida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, and J.N. Kuznia, Appl.Phys.Lett. 63 2777 (1993).
  23. [8] S.J.Pearton, C.R.Abernathy, F.Ren, J.R.Lothian, J.Vac.Sci.Technol.A 11 1772 (1993).
  24. [9] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, Appl.Phys. Lett. 69 1119 (1996).
  25. Chapter 3
  26. [1] R.Dingle, H.L.Stormer, A.C.Gossard, and W.Wiegmann, Appl.Phys.Lett. 33 665 (1978).
  27. [2] Rashmi, A.Kranti, S.Haldar, and R.S.Gupta, Microelectronics Journal 33 25-212 (2002).
  28. [3] F.Bernardini, V.Fiorentini, and D.Vanderbilt, Phys.Rev.B 56 10024 (1997).
  29. [5] K.Tsubouchi, N.Miskoshiba, IEEE Trans.Sonics Ultrason. SU-32 634 (1985).
  30. [6] A.S.Barker Jr. and M.Ilegems, Phys.Rev.B 7 743 (1973).
  31. [7] K.Tsubouchi, K.Sugai, and N.Mikoshiba, IEEE Ultrason.Symp. 1 375 (1981).
  32. [8] A.F.Wright, J.Appl.Phys. 82 2833 (1997).
  33. [9] O.Ambacher, J.Smart, J.R.Shealy, N.G.Weimann, K.Chu, M.Murphy, W.J.Schaff, L.F.Eastman, R.Dimitrov, L.Wittmer, M.Stutzmann, W.Rieger, and J.Hilsenbeck, J.Appl.Phys. 85 3222-3233 (1999).
  34. [10] R.Oberhuber, G.Zandler, and P.Vogl, Appl.Phys.Lett. 73 818 (1998).
  35. [11] O.Ambacher, B.Foutz, J.Smart, J.R.Shealy, N.G.Weimann, K.Chu, M.Murphy, A.J.Sierakowski, W.J.Schaff, L.F.Eastman, R.Dimitrov, A. Mitchell, and M.Stutzmann, J.Appl.Phys. 87 334-344 (2000).
  36. Chapter 4
  37. [1] 國立成功大學碩士論文Epitaxy of GaN by MOCVD and Fabrication of AlGaN/GaN MODFET by Chang-Yi Yang and Yan-Kuin Su.
  38. [2] 國立成功大學碩士論文Investigation and Fabrication of AlGaN/GaN MODFET by ICP System by Tzu-hsuan Hsu, Yan-Kuin Su, and Shoou-Jinn Chang.
  39. [1] M.A.Khan, Q.Chen, M.S.Shur, B.T.McDermott, J.A.Higgins, J.Burm, W.J.Schaff, and L.F.Eastman, IEEE Electron Device Lett 17 584 (1996)
  40. [2] A.Ozgur, W.Kim, Z.Fan, A.Botchkarev, A.Salvador, S.N.Mohammad, B.Sverdlov, and H.Morkoc, Electron.Lett. 31 1389 (1995)
  41. [3] W.Q.Chen and S.K.Hark, J.Appl.Phys. 77 5747 (1995)
  42. [4] A.Bykhovski, B.L.Gelmont, andM.S.shur, J.Appl.Phys. 91 6332 (1997)
  43. [5] G.Martin, A.Botchkarev, A.Rockett, and H.Morkoc Appl.Phys.Lett. 68 2541-2543 (1996)
  44. [6] 國立成功大學碩士論文Investigation and Fabrication of AlGaN/GaN MODFET by ICP System by Tzu-hsuan Hsu, Yan-Kuin Su, and Shoou-Jinn Chang
  45. [7] WILLIAM LIU, “FUNDAMENTALS OF III-V DEVICES”, JOHN WILEY & SONS, INC, NEW YORK/ CHICHESTER/ WEINHEIM/ BRISBANE/ SINGAPORE/ TORONTO, (1998)
  46. [8] 國立成功大學碩士論文Parameter Extraction and Model Establishment of AlGaAs/GaAs HBTs by P. C. Ho and Y. K. Su