Title

利用銅在二氧化鈦奈米管為觸媒以NH3還原NO反應之研究

Translated Titles

Studies on Catalytic Reduction of NO with NH3 over Cu Catalysts Supported on Titania Nanotubes

Authors

陳興安

Key Words

一氧化氮 ; 二氧化鈦奈米管 ; 氧化銅 ; 氨氣 ; 選擇性觸媒還原 ; Selective catalytic reduction ; Titania nanotubes ; Copper oxides ; Ammonia ; Nitric oxide

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2005年

Academic Degree Category

碩士

Advisor

鄧熙聖

Content Language

繁體中文

Chinese Abstract

二氧化鈦奈米管屬於anatase晶相之高表面積的觸媒載體,是利用商業化的二氧化鈦P25在NaOH進行水熱處理後,以HCl酸洗所製備而成的,而奈米管的表面積大約為400 m2/g。將二氧化鈦奈米管和其他商業化可利用的二氧化鈦奈米顆粒含浸銅後,進行以NH3選擇性觸媒還原NO的檢測,結果顯示銅在二氧化鈦奈米管較在其他奈米顆粒上有較高的觸媒活性,在程溫還原和X光光電子能譜分析中,反映出奈米管的大表面積結構對於銅分散的優勢,因此導致銅分散在奈米管上有高的活性。   在載入金屬離子進入多孔性的二氧化鈦載體時,初濕含浸法和濕式含浸法是常見的使用方法,在本研究中期望發展出一種為“水熱離子嵌入”法,是在二氧化鈦水熱處理形成時,將銅離子插入在鈦酸的層狀結構內。而經過水熱離子嵌入過程所得載入銅的二氧化鈦,在以NH3選擇性觸媒還原NO反應中最高的活性,利用X光吸收光譜和擴散反射式UV-vis吸收光譜進行分析,反映出水熱離子嵌入法可以防止銅的聚集,並且有效地分散氧化銅在二氧化鈦奈米管上,因此高度的分散性加上高表面積的載體,將導致有高活性的二氧化鈦載體觸媒。

English Abstract

Large surface-area catalyst supports, TiO2 nanotubes in anatase phase, were prepared from hydrothermal treatment of the commercial P25 TiO2 in NaOH followed by HCl washing. The surface area of the nanotube aggregates is as large as ca. 400 m2/g. The TiO2 nanotubes and other commercially available TiO2 nanoparticles were impregnated with Cu and examined in selective catalytic reduction of NO with NH3. The coppery species supported on the nanotubes showed a higher catalytic activity than those supported the nanoparticles. Analysis with temperature programmed reduction and X-ray photoelectron spectroscopy reflected that the large surface-area feature of the nanotubes was advantageous for Cu dispersion, thus leading to a high activity of Cu distributed over the nanotubes.   In incorporating metal ions into porous TiO2 supports, incipient wetness impregnation and wet impregnation were the methods generally used. The present work wishes to report a newly developed “hydrothermal ion-intercalation” (HII) method, in which Cu ions can intercalate into the interlayer of the titanate species formed during the hydrothermal treatment on TiO2. The Cu-planted TiO2 through the HII process was shown to have the highest activity in selective catalytic reduction of NO with NH3. Characterizations with X-ray absorption and UV-vis diffuse reflectance spectra reflected that the HII method can retarded the agglomeration of copper species and effectively disperse copper oxides on TiO2 nanotubes. The high degree of dispersion combined with the high surface area of the support would lead to high activity of TiO2-supported catalysts.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. [5] H. Bosch, F. Janssen, Catalysis Today, 1988, 2, 369.
    連結:
  2. [6] Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1975, 14, 268.
    連結:
  3. [7] Bauerle, G.L.; Wu, S.C.; Nobe K. Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 117.
    連結:
  4. [10] Benítez, In Process Engineering and Design for Air pollution Control, Prentice-Hall: Englewood Cliffs, NJ, 1993.
    連結:
  5. [11] Pârvulescu, V.I.; Grange, P.; Delmon, B., Catal. Today, 1999, 46, 233.
    連結:
  6. [21] U. Diebold, Surf. Sci. Rep. 2003, 48, 53.
    連結:
  7. [23] S. Iijima, Nature, 1991, 354, 56.
    連結:
  8. [25] H. Nakamura and Y. Matsui, J. Am. Chem. Soc. 1995, 117, 2651.
    連結:
  9. [26] B. B. Lakshmi, C. J. Patrissi and C. R. Martin, Chem. Mater. 1997, 9, 2544.
    連結:
  10. [29] Hoyer P. Langmuir 1996, 12, 1411.
    連結:
  11. [30] Imai H.; Takei Y.; Shimizu K.; Matsuda M.; Hirashima H. J. Mater. Chem. 1999, 9, 2971.
    連結:
  12. [33] Du G. H.; Chen Q.; Che R. C.; Yuan Z. Y.; Peng L. M. Appl. Phys. Lett. 2001, 79, 3702.
    連結:
  13. [34] Seo D. S.; Lee J. K.; Kim H. J. Cryst. Growth 2001, 229, 428.
    連結:
  14. [35] Zhang Q.; Gao L.; Sun J.; Zheng S. Chem. Lett. 2002, 226.
    連結:
  15. [37] C.C. Tsai, H. Teng, Chem. Mater. 2004, 16, 4352.
    連結:
  16. [39] Pârvulescu, V.I.; Grange, P.; Delmon, B. Catal. Today, 1999, 46, 233.
    連結:
  17. [44] D. C. Koningsberger, and R. Prins, X-Ray Absorption:Principles,Application, Techniques of EXAFS, SEXAFS and XANES, JohnWiley, New York, 1988.
    連結:
  18. [46] B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, Prentice Hall, 2001.
    連結:
  19. [49] X. Yu, N. Wu, Y. Xie, Y. Tang, J. Mater. Chem. 2000, 10, 1629.
    連結:
  20. [51] S.M. Jeong, S.H. Jun, K.S. Yoo, S.D. Kim, Ind. Eng. Chem. Res. 1999, 38, 2210.
    連結:
  21. [53] F.S. Delk II, A. Vavere, J. Catal. 1984, 85, 380.
    連結:
  22. [55] C.C. Liu, H. Teng, Appl. Catal. B, 2005, 58, 69.
    連結:
  23. [56] Y.J. Huang, H.P. Wang, J.F. Lee, Appl. Catal. B, 2003, 40, 111.
    連結:
  24. [61] R. Ma, T. Sasaki, Y. Bando, J. Am. Chem. Soc. 2004, 126, 10382.
    連結:
  25. [62] X. Sum, Y. Li, Chem. Eur. J. 2003, 9, 2229.
    連結:
  26. [65] E.P. Reddy, B. Sun, P.G. Smirniotis, J. Phys. Chem. B, 2004, 108, 17198.
    連結:
  27. [69] J. Zhao, Z. Liu, D. Sun, J. Catal. 2004, 227, 297.
    連結:
  28. [70] H. Teng, L.Y. Hsu, Y.C. Lai, Environ. Sci. Technol. 2001, 35, 369.
    連結:
  29. [1] 鄧熙聖,國內外選擇性觸媒還原法狀況及技術發展調查, 行政院國家科學委員會專題研究計畫, 1997.
  30. [2] 吳榮宗,氮氧化物防治技術及未來發展趨勢,工業污染防治,48, 1, p.26-41, 1994.
  31. [3] 張君正,張木彬,氮氧化物生成機制與控制技術之探討,50, 4, p.19-35, 1994.
  32. [4] 楊士慶,張志成,簡介低氮氧化物燃燒技術,化工技術, 3, 7, 7, p.146-159, 1995.
  33. [8] Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977a, 56, 267.
  34. [9] Fujimoto, K.; Shikada, T.; Kunugi, T.; Tominaga, H. Nenryo Kyokaishi 1977b, 56, 666.
  35. [12] Ramis, G.; Yi, L.; Busca, G.; Turco, M.; Kotur, E.; Willey, R.J., J. Catal. 1995, 157, 523.
  36. [13] Van der Grigt, C.J.G.; Woldhuis, A.F.; Maaskant, O.L., Catal. Today, 1996, 27, 23.
  37. [14] Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H.; Kaneko, S.; Kubo, Y. Ind. Eng. Chem. Prod. Res.Des. 1981, 20, 91.
  38. [15] Shikada, T.; Fujimoto, K.; Kunugi, T.; Tominaga, H. J. Chem. Tech. Biotechnol. A 1983, 33, 446.
  39. [16] Chan, L-K.; Sarofim, A-F.; Beer, J-M.; Combustion and Flame 1983, 52, 37.
  40. [17] O.V. Komova, A.V. Simakov, L.T. Tzykoza, N.N. Sazonova, A.V. Ushakov, G.B. Barannik, Z.R. Ismagilov, React. Kinet. Catal. Lett. 1995, 54, 361.
  41. [18] G. Centi, S. Perathoner, B. Kartheuser, D. Rohan, B.K. Hodnett, Appl. Catal. 1992, 1, 129.
  42. [19] J. Blanco, C.U.I. Odenbrand, P. Avila, C. Knapp, Catal. Today, 1998, 45, 103.
  43. [20] Miller, G. T., Jr., Environmental Science, Fourth ed., California, Wadsworth, 1992.
  44. [22] Amy L. Linsebigler, Guangquan Lu, and John T. Yates, Chem. Rev. 1995, 95, 735.
  45. [24] B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao, J. Mater. Res. 1997, 12, 604.
  46. [27] S. Kobayashi, K. Hanabusa, N. Hamasaki, M. Kimura and H. Shirai, Chem. Mater. 2000, 12, 1523.
  47. [28] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 1998, 14, 3160.
  48. [31] Lei Y.; Zhang L. D.; Meng G. W., Li G. H.; Zhang X. Y.; Liang C. H.; Chen W.; Wang S. X. Appl. Phys. Lett. 2001, 78, 1125.
  49. [32] Kasuga T.; Hiramatsu M.; Hoson A.; Sekino T.; Niihara K. Adv. Mater. 1999, 11, 1307.
  50. [36] Wang Y. Q.; Hu G. Q.; Duan X. F.; Sun H. L.; Xue Q. K. Chem. Phys. Lett. 2002, 365, 427.
  51. [38] Gong D.; Grimes C. A.; Varghese O. K. J. Mater. Res. 2001, 16, 3331.
  52. [40] G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of HeterogeneousCatalysis ”, vol 3, VCH D-69451 Weinheim, 1997, 1508.
  53. [41] S. Brunaller, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 390.
  54. [42] E.P. Barrett, L.G. J oyner, and P.P. Halenda, J. Am. Chem. Soc. 1951, 73, 373.
  55. [43] K. Boon Teo, “EXAFS:Basic Principle and Data Analysis”, Springer-Verlag, New York, 1986.
  56. [45] S. Lowell, J.E. Shields, “Powder surface area and porosity”, New York: Chapman & Hall; 1991.
  57. [47] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Handbook of X-Ray photoelectron spectroscopy, Perkin-Elmer, Eden Prairie, Minnesota, 1979.
  58. [48] J. Tauc, Amorphous and liquid semiconductors, Plenum, New York, 1974.
  59. [50] H. Aritani, T. Tanaka, N. Akasaka, T. Funabiki, S. Yoshida, H. Gotoh, Y. Okamoto J. Catal. 1997, 168, 412.
  60. [52] T. Curtin, F.O. Regan, C. Deconinck, N. Knüttle, B.K. Hodnett, Catal. Today,2000, 55, 189.
  61. [54] O.V. Komova, A.V. Simakov, V.A. Rogov, D.I. Kochubei, G.V. Odegova, V.V. Kriventsov, E.A. Paukshtis, V.A. Ushakov, N.N. Sazonova, T.A. Nikoro, J. Mol. Catal. A, 2000, 161, 191.
  62. [57] Y.J. Huang, H.P. Wang, J.F. Lee, Chemosphere, 2003, 50, 1035.
  63. [58] R. Hernández-Huesca, J. Santamaría-González, P. Braos-García, P. Maireles-Torres, E. Rodr´ıguez-Castellón, A. Jiménez-López, Appl. Catal. B, 2001, 29, 1.
  64. [59] I.J. Drake, K.L. Fujdala, S. Baxamusa, A.T. Bell, T.D. Tilley, J. Phys. Chem. B,2004, 108, 18421.
  65. [60] H. Aritani, T. Tanaka, N. Akasaka, T. Funabiki, S. Yoshida, H. Gotoh, Y. Okamoto J. Catal. 1997, 168, 412.
  66. [63] K.V.R. Chary, K.K. Seela, G.V. Sagar, B. Sreedhar, J. Phys. Chem. B, 2004, 108, 17198.
  67. [64] K.V.R. Chary, G.V. Sagar, D. Naresh, K.K. Seela, B. Sridhar, J. Phys. Chem. B, 2005, 109, 9437.
  68. [66] J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang, Dalton Tans., 2003, 3898.
  69. [67] L. Chmielarz, P. Kustrowski, M. Zbroja, A. Rafalska-Lasocha, B. Dudek, R. Dziembaj, Appl. Catal. B, 2003, 45, 103.
  70. [68] S. Isarangura na ayuthaya, N. Mongkolsiri, P. Praserthdam, P.L. Silveston, Appl. Catal. B, 2003, 43, 1.
Times Cited
  1. 蔡建成(2005)。由水熱處理二氧化鈦所合成奈米管之結構分析。成功大學化學工程學系學位論文。2005。1-112。
  2. 馮勝國(2011)。微奈米碳球與鈦酸鹽奈米管之製備與應用。中原大學土木工程研究所學位論文。2011。1-116。
  3. 陳冠中(2017)。以水熱法製備二氧化鈦奈米管與其改質分解水產氫之應用。中興大學化學工程學系所學位論文。2017。1-73。