Title

整合行星齒輪式減速機直流無刷馬達之設計與分析

Translated Titles

Design and Analysis of Brushless DC Motors with Integrated Planetary Gear Trains

Authors

吳益彰

Key Words

整合設計 ; 機電整合 ; 有限元素分析 ; 電磁分析 ; 行星齒輪系 ; 直流無刷馬達 ; Integrated design ; Mechatronics ; Brushless DC motor ; Planetary gear train ; Electromagnetic analysis ; Finite-element analysis

PublicationName

成功大學機械工程學系學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

博士

Advisor

顏鴻森

Content Language

英文

Chinese Abstract

馬達與齒輪減速機的組合搭配,廣泛使用於高扭矩與低轉速的應用場合,是典型的機電整合實例。傳統設計是在馬達與齒輪減速機個別設計與製造完成後,再做相互選配的工作,存在著整體效率不佳、組成機件較多、及安裝空間較不緻密等固有缺點。本研究之目的在於整合直流無刷馬達的電磁設計與行星齒輪式減速機之機構設計的基礎學理,從構造上與功能面構思一體式的整合設計方案,並將此一創新構想有系統地實現。首先,以直流無刷馬達之構形與作動原理以及行星齒輪系的運動構造為基礎,歸納設計需求與限制,合成出兩個內轉子與兩個外轉子構形的可行設計方案,其主要特色是將齒形系統整合於馬達的定子組件上。其次,建立所提設計的等效磁路與氣隙磁導模型,可迅速地解析齒形對直流無刷馬達電磁特性與性能的影響,並輔以有限元素法驗證其正確性。接著,提出一有效方法可大幅降低直流無刷馬達的頓轉扭矩(Cogging torque),有助於該設計在精密運動與位置控制場合的應用。最後,發展一套整合設計流程,有系統地將直流無刷馬達之電磁場與齒輪系的運動構造做結合設計,並以半導體製程的傳輸設備為設計例,將所提的機電整合裝置具體實現。經與現有產品比較,該設計具有低頓轉扭矩、低轉矩漣波(Torque ripple)、以及高轉矩密度(Torque density)的優點。本文之成果有助於馬達與齒輪減速機整合設計的創新研發,並提供工程設計人員一解析與設計該機電整合裝置的有效工具。

English Abstract

The combinations of electric motors and gear reducers are considered as typical examples of mechatronics, which are widely used in high driving torque and/or low rotational speed applications. However, the conventional design strategy, in which electric motors and gear reducers are independently designed and manufactured, suffers from inherent disadvantages on low efficiency, redundant mechanical elements usage, and incompact workspace arrangements. The purpose of this work is to integrate the brushless DC (BLDC) motor with the planetary gear train (PGT) to form a compact structural assembly with desired functions. Based on the operational principles and typical configurations of surface-mounted permanent-magnet BLDC motors as well as the kinematic structures of PGTs, four feasible design concepts with interior and exterior configurations are successfully generated subject to the desired requirements and constraints. Due to the special feature of gear teeth integrated on the stator for the proposed design, the effects of gear teeth on the electromagnetic field and motor performance are analytically investigated with the aid of the equivalent magnetic circuit method, while the validity is verified by the finite-element analysis. Besides, different gear profile systems associated with feasible numbers of gear teeth for effectively reducing the cogging torque are presented, which makes the proposed designs beneficial to the widely applications on accurate motion and position control. Eventually, an integrated design process is developed for the implementation of this electromechanical device. A design example for using in semiconductor conveying equipments is illustrated, which performs better than the existing design on the cogging torque, torque ripple, and torque density.

Topic Category 工學院 > 機械工程學系
工程學 > 機械工程
Reference
  1. 3.Vanjani, C. R., 2000, “Brushless Electric Motor Assembly,” U.S. Patent 6,104,112.
    連結:
  2. 10. 直流無刷馬達型錄,2004,泰映科技股份有限公司,台北,台灣。
    連結:
  3. 11. Lee, H. J., Hwang, S. M., Hwang, G. Y., Jeung, S. K., and Kang, B. S., 2003, “Design of an Integrated Microspeaker and Vibration Motor Used for Mobile Phones,” Journal of Applied Physics, Vol. 93, No. 10, pp. 8516-8518.
    連結:
  4. 12. Suzuki, K., Inaguma, Y., Haga, K., and Nakayama, T., 1995, “Integrated Electro-Hydraulic Power Steeling System with Low Electric Energy Consumption,” Society of Automotive Engineers, Paper No. 950580, pp. 948-954.
    連結:
  5. 13. Harris, N. C., Jahns, T. M., and Huang, S., 2002, “Design of an Integrated Motor/Controller Drive for an Automotive Water Pump Application,” Proceedings of IEEE Industry Applications Society Annual Meeting, Pittsburgh, PA, Vol. 3, pp. 2028-2035.
    連結:
  6. 14. Fahimi, B., Emadi, A., and Sepe, R. B., 2004, “A Switched Reluctance Machine-Based Starter/Alternator for More Electric Cars,” IEEE Transactions on Energy Conversion, Vol. 19, No. 1, pp. 116-124.
    連結:
  7. 15. EL-Refaie, A. M., Manzke, R., and Jahns, T. M., 2004, “Application of Bi-State Magnetic Material to Automotive Offset-Coupled IPM Starter/Alternator Machine,” IEEE Transactions on Industry Applications, Vol. 40, No. 3, pp. 717-725.
    連結:
  8. 19. Qu, R. and Lipo, T. A., 2004, “Analysis and Modeling of Air-Gap and Zigzag Leakage Fluxes in a Surface-Mounted Permanent-Magnet Machine,” IEEE Transactions on Industry Applications, Vol. 40, No. 1, pp. 121-127.
    連結:
  9. 20. Yang, Y. P., Luh, Y. P., and Lee, C. M., 2002, “A Novel Design of Optimal Phase Current Waveform for an Electric Vehicle Wheel Motor,” Electric Power Components and Systems, Vol. 30, pp. 705-721.
    連結:
  10. 21. Yang, Y. P., Luh, Y. P., and Cheung, C. H., 2004, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles- Part I: Multiobjective Optimal Design and Analysis,” IEEE Transactions on Magnetics, Vol.40, No.4, pp.1873-1882.
    連結:
  11. 22. Boules, N., 1985, “Prediction of No-Load Flux Density Distribution in Permanent Magnet Machines,” IEEE Transactions on Industry Applications, Vol.21, No.4, pp.633-642.
    連結:
  12. 23. Zhu, Z. Q., Howe, D., Bolte, E., and Ackermann, B., 1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part I: Open-Circuit Field,” IEEE Transactions on Magnetics, Vol.29, No.1, pp.124-135.
    連結:
  13. 24. Zhu, Z. Q., and Howe, D., 1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part II: Armature-Reaction Field,” IEEE Transactions on Magnetics, Vol.29, No.1, pp.136-142.
    連結:
  14. 25. Zhu, Z. Q., and Howe, D.,1993, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part III: Effect of Stator Slotting,” IEEE Transactions on Magnetics, Vol.29, No.1, pp.143-151.
    連結:
  15. 26. Zhu, Z. Q., Howe, D., and Chan, C. C., 2002, “Improved Analytical Model for Predicting the Magnetic Field Distribution in Brushless Permanent-Magnet Machines,” IEEE Transactions on Magnetics, Vol.38, No.1, pp.229-238.
    連結:
  16. 27. Muller, W., 1982, “A New Iteration Technique for solving Stationary Eddy-Current Problems Using the Method of Finite Differences,” IEEE Transactions on Magnetics, Vol.18, No.2, pp.588-593.
    連結:
  17. 28. Peng, J. P., Salon, S., and Chari, M. V. K., 1984, “A Comparison of Finite Element and Boundary Element Formulations for Three-Dimensional Magnetostatic Problems,” IEEE Transactions on Magnetics, Vol.20, No.5, pp.1950-1952.
    連結:
  18. 29. Liu, Y. and Yi, J., 1988, “Numerical Analysis of Multipole Magnetizing of a PM Stepping Motor Rotor,” IEEE Transactions on Magnetics, Vol.24, No.6, pp.2943-2945.
    連結:
  19. 30. Lee, K. S., Debortoil, M. J., Lee, M. J., and Salon, S. J., 1991, “Coupling Finite Elements and Analytical Solution in the Airgap of Electric Machines,” IEEE Transactions on Magnetics, Vol.27, No.5, pp.3955-3957.
    連結:
  20. 31. Hwang, C. C., John S. B., and Bor, S. S., 1999, “The Analysis and Design of a NdFeB Permanent-Magnet Spindle Motor for CD-ROM Drive,” IEEE Transactions on Energy Conversion, Vol.14, No.4, pp.1259-1264.
    連結:
  21. 32. Kitamura, S., Ishihara, Y., Todaka, T., and Inoue, Y., 1999, “Magnetic Field Analysis of Polar Anisotropic Plastic Magnet and Application for DC Brushless Motor,” Electrical Engineering in Japan, Vol.127, No.3, pp.1001-1007.
    連結:
  22. 33. Kim, T. H., Choi, J. H., Ko, K. C., and Lee, J, 2003, “Finite-Element Analysis of Brushless DC Motor Considering Freewheeling Diodes and DC Link Voltage Ripple,” IEEE Transactions on Magnetics, Vol.39, No.5, pp.3274-3276.
    連結:
  23. 34. Jahns, T. M. and Soong, W. L., 1996, “Pulsating Torque Minimization Techniques for Permanent Magnet AC Motor Drives- A Review,” IEEE Transactions on Industrial Electronics, Vol. 43, No. 2, pp. 321-330.
    連結:
  24. 35. Zhu, Z. Q., and Howe, D., 1992, “Analytical Prediction of the Cogging Torque in Radial-Field Permanent Magnet Brushless Motors,” IEEE Transactions on Magnetics, Vol.28, No.2, pp.1371-1374.
    連結:
  25. 36. Zhu, Z. Q., and Howe, D., 2000, “Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines,” IEEE Transactions on Energy Conversion, Vol.15, No.4, pp.407-412.
    連結:
  26. 37. Hwang, S. M., Eom, J. B., Hwang, G. B., Jeong, W. B., and Jung, Y. H., 2000, “Cogging Torque and Acoustic Noise Reduction in Permanent Magnet Motors by Teeth Pairing,” IEEE Transactions on Magnetics, Vol.36, No.5, pp.3144-3146.
    連結:
  27. 38. Wang, X., Yang, Y., and Fu, D., 2003, “Study of Cogging Torque in Surface-Mounted Permanent Magnet Motors with Energy Method,” Journal of Magnetism and Magnetic Materials, Vol.267, No.1, pp.80-85.
    連結:
  28. 39. Tsai, M. C., Huang, C. C., and Shen, S. Y., 2004, “Analysis Method for Motor Characteristics with Three-Dimensional Flux Distribution,” IEEE Transactions on Magnetics, Vol.40, No.2, pp.443-450.
    連結:
  29. 40. Keyhani, A. and Studer, C. B., 1999, “Study of Cogging Torque in Permanent Magnet Machines,” Electric Machines and Power Systems, Vol.27, pp.665-678.
    連結:
  30. 41. Sakabe, S., Shinoda, Y., and Yokoyama, H., 1990, “Effect of Interpole on Cogging Torque of Two-Phase Permanent Magnet Motor,” Electrical Engineering in Japan, Vol.110, No.4, pp.131-138.
    連結:
  31. 42. Rizzo, M., Savini, A., and Turowski, J., 1991, “Influence of Number of Poles on the Torque of DC Brushless Motors with Auxiliary Salient Poles,” IEEE Transactions on Magnetics, Vol.27, No.6, pp.5420-5422.
    連結:
  32. 43. Goto, M. and Kobayashi, K., 1983, “An Analysis of the Cogging Torque of a DC Motor and a New Technique of Reducing the Cogging Torque,” Electrical Engineering in Japan, Vol.103, No.5, pp.711-718.
    連結:
  33. 44. Zeroug, H., Boukais, B., and Saharoui, H., 2002, “Analysis of Torque Ripple in a BDCM,” IEEE Transactions on Magnetics, Vol.38, No.2, pp.1293-1296.
    連結:
  34. 45. Koh, C. S. and Seol, J. S., 2003, “New Cogging-Torque Reduction Method for Brushless Permanent-Magnet Motors,” IEEE Transactions on Magnetics, Vol.39, No.6, pp.3503-3506.
    連結:
  35. 46. Li, T., and Slemon, G., 1988, “Reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol.24, No.6, pp.2901-2903.
    連結:
  36. 47. Eom, J. B, Hwang, S. M., Kim, T. J., Jeong, W. B., and Kang, B. S., 2001, “Minimization of Cogging Torque in Permanent Magnet Motors by Teeth Pairing and Magnet Arc Design Using Genetic Algorithm,” Journal of Magnetism and Magnetic Materials, Vol.226, No.2, pp.1229-1231.
    連結:
  37. 48. Koh, C. S., Yoon, H. S., Nam, K. W., and Choi, H. S., 1997, “Magnetic Pole Shape Optimization of Permanent Magnet Motor for Reduction of Cogging Torque,” IEEE Transactions on Magnetics, Vol.33, No.2, pp.1822-1827.
    連結:
  38. 49. Chung, T. K., Kim, S. K., and Hahn, S. Y, 1997, “Optimal Pole Shape Design for the Reduction of Cogging Torque of Brushless DC Motor Using Evolution Strategy,” IEEE Transactions on Magnetics, Vol.33, No.2, pp.1908-1911.
    連結:
  39. 50. Yao, Y. D., Huang, D. R., Wang, J. C., Liou, S. H., and Wang, S. J., 1997, “Simulation Study of the reduction of Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol.33, No.5, pp.4095-4097.
    連結:
  40. 51. Yao, Y. D., Huang, D. R., Wang, J. C., and Wang, S. J., 1998, “Study of a High Efficiency and Low Cogging Torque Spindle Motor,” IEEE Transactions on Magnetics, Vol.34, No.2, pp.465-467.
    連結:
  41. 52. Lin, Y. K., Hu, Y. N., Lin, T. K., Lin, H. N., Chang, Y. H., Chen, C. Y., Wang, S. J., Ying, T. F., 2000, “A Method to Reduce the Cogging Torque of Spindle Motors,” Journal of Magnetism and Magnetic Materials, Vol.209, No.2-3, pp.180-182.
    連結:
  42. 53. Hsu, L. Y. and Tsai, M. C., 2004, “Tooth Shape Optimization of Brushless Permanent Magnet Motors for Reducing Torque Ripples,” Journal of Magnetism and Magnetic Materials, Vol.282, pp.193-197.
    連結:
  43. 54. Ackermann, B., Janssen, J. H. H., Sottek, R., and Steen, R. I., 1992, “New Technique for Reduction Cogging Torque in a Class of Brushless DC Motors,” IEE Proceedings-B, Vol.339, No.4, pp.315-320.
    連結:
  44. 55. Ishikawa, T., and Slemon, G. R., 1993, “A Method of Reducing Ripple Torque in Permanent Magnet Motors without Skewing,” IEEE Transactions on Magnetics, Vol.29, No.2, pp.2028-2031.
    連結:
  45. 56. Binesti, D. and Ducreux, J. P., 1996, “Core Losses and Efficiency of Electric Motors Using New Magnetic Materials,” IEEE Transactions on Magnetics, Vol.32, No.5, pp.4887-4889.
    連結:
  46. 57. Upadhyay, P. R., Rajagopal, K. R., and Singh, B. P., 2004, “Design of a Compact Winding for An Axial-Flux Permanent-Magnet Brushless DC Motor Used in An Electric Two-Wheel,” IEEE Transactions on Magnetics, Vol.40, No.4, pp.2026-2028.
    連結:
  47. 58. Boules, N., 1990, “Design Optimization of Permanent Magnet DC Motors,” IEEE Transactions on Industry Applications, Vol.26, No.4, pp.786-792.
    連結:
  48. 59. Takano, H., Itoh, T., Mori, K., Sakuta, A., and Hirasa, T., 1992, “Optimum Values for Magnet and Armature Winding Thickness for Axial-Field Permanent Magnet Brushless DC Motors,” IEEE Transactions on Industry Applications, Vol.28, No.2, pp.350-357.
    連結:
  49. 60. Sim, D. J., Cho, D. H., Chun, J. S., Jung, H. K., and Chung, T. K., 1997, “Efficiency Optimization of Interior Permanent Magnet Synchronous Motor Using Genetic Algorithms,” IEEE Transactions on Magnetics, Vol.33, No.2, pp.1880-1883.
    連結:
  50. 61. Cho, D. H., Jung, H. K., and Sim, D. J., 1999, “Multiobjective Optimal Design of Interior Permanent Magnet Synchronous Motors Considering Improved Core Loss Formula,” IEEE Transactions on Energy Conversion, Vol.14, No.4, pp.1347-1352.
    連結:
  51. 62. Hosokawa, Y., Noguchi, S., Yamashita, H., and Tanimoto, S., 2002, “An Optimal Design Method for Efficiency of Permanent Magnet Motors,” Electrical Engineering in Japan, Vol. 138, No. 3, pp. 72-79.
    連結:
  52. 63. Yang, Y. P., Wang, J. P., Wu, S. W., and Luh, Y. P., 2004, “Design and Control of Axial-Flux Brushless DC Wheel Motors for Electric Vehicles- Part II: Optimal Current Waveforms and Performance Test,” IEEE Transactions on Magnetics, Vol.40, No.4, pp.1883-1891.
    連結:
  53. 64. Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms,” Journal of Mechanisms, Vol. 5, pp. 357-392.
    連結:
  54. 65. Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, Vol. 7, pp. 263-275.
    連結:
  55. 69. Hsu, C. H. and Lam, K. T., 1992, “A New Graph Representation for the Automatic Kinematic Analysis of Planetary Spur-Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 114, No. 1, pp. 196-200.
    連結:
  56. 70. Liu, C. P., Chen, D. Z., and Chang, Y. T., 2004, “Kinematic Analysis of Geared Mechanisms Using the Concept of Kinematic Fractionation,” Mechanism and Machine Theory, Vol. 39, No. 11, pp. 1207-1221.
    連結:
  57. 71. Pennestri, E. and Freudenstein, F., 1993, “A Systematic Approach to the Power-Flow and Static-Force Analysis in Epicylic Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 115, No. 1, pp. 639-644.
    連結:
  58. 73. Pennestri, E. and Valentini, P. P., 2003, “A Review of Formulas for the Mechanical Efficiency Analysis of Two Degrees-of-Freedom Epicylic Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 125, No. 3, pp. 602-608.
    連結:
  59. 74. White, G., 2003, “Derivation of High Efficiency Two-Stage Epicyclic Gears,” Mechanism and Machine Theory, Vol. 38, No. 2, pp. 149-159.
    連結:
  60. 75. 王心德,1999,整合齒輪減速機直流馬達之構形設計,國立成功大學機械工程學系,碩士論文。
    連結:
  61. 78. Tsai, L. W., 2001, Mechanism Design: Enumeration of Kinematic Structures According to Function, CRC Press LLC, Boca Raton, Florida.
    連結:
  62. 80. Tsai, M. C., Weng, M. H., and Hsieh, M. F., 2002, “Computer-Aided Design and Analysis of New Fan Motors,” IEEE Transactions on Magnetics, Vol. 38, No. 5, pp. 3467-3474.
    連結:
  63. 82. Gordon, R. S. and Liu, X., 1990, “Core Losses in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 26, No. 5, pp. 1653-1655.
    連結:
  64. 84. Mao, S. H., May, 2002, Design of a Direct-Drive Brushless DC Motor for Treadmills, Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan.
    連結:
  65. 85. Castillo, J. M., 2002, “The Analytical Expression of the Efficiency of Planetary Gear Trains,” Mechanism and Machine Theory, Vol. 37, No. 2, pp. 197-214.
    連結:
  66. 87. Lin, Y. L., June, 1994, Kinematic Structure of Planetary Gear Trains for Automatic Transmissions, Master Thesis, Department of Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
    連結:
  67. 88. Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and Other Mechanisms,” Journal of Mechanisms, Vol. 5, pp. 357-392.
    連結:
  68. 89. Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109, No. 3, pp. 329-337.
    連結:
  69. 90. Hsu, C. H., 1993, “Synthesis of Kinematic Structure of Epicyclic Gear Trains by Admissible Graph Method,” Journal of Franklin Institute, Vol. 330, No. 5, pp. 913-927.
    連結:
  70. 1.Fukui, K., 1986, “Geared Motor,” U.S. Patent 4,626,722.
  71. 2.Kinoshita, S. and Sakagami, K., 2000, “Geared Motor,” U.S. Patent 6,031,308.
  72. 4.Torii, K., Adachi, T., Sakai, H., and Omori, S., 2003, “Geared Motor Having Worm Wheel Drivingly Connected to Output Shaft,” U.S. Patent 6,591,707.
  73. 5. Saito, T. and Katoh, M., 2004, “Starter Motor Having Planetary Gear Device for Reducing Rotational Speed of Electric Motor,” U.S. Patent 6,782,770.
  74. 6. 賴介村,梁嘉生,1994,電動輪圈馬達傳動裝置,中華民國專利244,042。
  75. 7. 蕭雲隆,1996,輪圈馬達改良構造,中華民國專利300,682。
  76. 8. 許俊甫,2001,內齒輪外旋轉之輪鼓式馬達,中華民國專利501,330。
  77. 9. Oriental Motor General Catalogue, 2003, Oriental Motor Co., Tokyo, Japan.
  78. 16. Infineon Technologies Co., 2004, “Power Semiconductors and Modules for 42V-Applications,” http://www.infineon.com.
  79. 17. Miller, T. J. E. and Hendershot, Jr., J. R., 1994, Design of Brushless Permanent Magnet Motors, Clarendon Press, Oxford.
  80. 18. Hanselman, D. C., 1994, Brushless Permanent-Magnet Motor Design, McGraw-Hill, Singapore.
  81. 66. Tsai, L. W., 1985, “An Algorithm for the Kinematic Analysis of Epicyclic Gear Trains,” Proceedings of the 9th Applied Mechanism Conference, Kansas City, Missouri, Vol. 1, pp. 1-5.
  82. 67. Yan, H. S. and Hsieh, L. C., 1991, “Kinematic Analysis of General Planetary Gear Trains,” Proceedings of the 8th World Congress on the Theory of Machines and Mechanisms, Prague, Czechoslovakia, Vol. 6, pp. 153-157.
  83. 68. Hsieh, L. C. and Yan, H. S., 1992, “Generalized Kinematic Analysis of Planetary Gear Trains,” International Journal of Vehicle Design, Vol. 13, Nos. 5/6, pp. 494-504.
  84. 72. Pennestri, E. and Freudenstein, F., 1993, “The Mechanical Efficiency of Epicylic Gear Trains,” ASME Transactions, Journal of Mechanical Design, Vol. 115, No. 1, pp. 645-651.
  85. 76. 顏鴻森,蔡明祺,王心德,洪銀農,洪銀樹,2001,馬達與齒輪整合之裝置,中華民國專利434,977。
  86. 77. 蔡明祺,林博正,陳添智,王明賢,2003,同心式馬達設計與控制應用,國科會專題計畫期中報告,NSC91-2213-E-006-123。
  87. 79. Chai, H. D., 1998, Electromechanical Motion Devices, Prentice Hall PTR, Upper Saddle River, New Jersey.
  88. 81. C. E. Wilson and J. P. Sadler, 1993, Kinematics and Dynamics of Machinery, HarperCollins College Publishers, New York.
  89. 83. Pacific Electric Wire & Cable Co., http://www.pewc.com.tw.
  90. 86. Tuplin, W. A., April 4, 1957, “Designing Compound Epicyclic Gear Trains for Maximum Speed at High Velocity Ratios,” Machine Design, pp. 100-104.
Times Cited
  1. 陳弘偉(2011)。漸開線減速機之運動與強度分析研究。虎尾科技大學創意工程與精密科技研究所學位論文。2011。1-103。 
  2. 鄭駿豪(2009)。馬達減速機能源效率測試研究。崑山科技大學機械工程研究所學位論文。2009。1-112。
  3. 黃崇豪(2010)。馬達減速機之最佳性能匹配與效率檢測。崑山科技大學機械工程研究所學位論文。2010。1-66。
  4. 莊舜能(2011)。螺旋齒輪減速機之能源效率分析。崑山科技大學機械工程研究所學位論文。2011。1-105。
  5. 金浩中(2011)。用於輕型電動載具之軸向磁通永磁同步馬達設計與製作。臺北科技大學電機工程系研究所學位論文。2011。1-70。
  6. 林志霖(2014)。雙輸出可獨立控制傳動系統之實證。中山大學機械與機電工程學系研究所學位論文。2014。1-112。
  7. 劉慶昇(2016)。傳動零件設計對減速機之動力影響。虎尾科技大學機械與電腦輔助工程系碩士班學位論文。2016。1-66。
  8. 王玟丰(2016)。MW級風機雙輸出可獨立控制傳動系統之動力分析。中山大學機械與機電工程學系研究所學位論文。2016。1-63。
  9. 洪圻(2017)。2MW風力發電齒輪傳動系統之動力分析。中山大學機械與機電工程學系研究所學位論文。2017。1-88。