Translated Titles

Electrical Properties and Fabrication of GaInNAs PIN Photodetectors



Key Words

氮砷化銦鎵 ; 光檢測器 ; photodetectors ; GaInNAs



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在本論文中,我們利用有機金屬氣相沉積的方式將新穎的氮砷化銦鎵多重量子井成長在砷化鎵基板上,做為光檢測器的光吸收層。由於在砷化鎵中摻雜適量的銦與氮可以使得氮砷化銦鎵晶格匹配於砷化鎵上,因此可以降低因為晶格不匹配所產生的缺陷,而磊晶品質佳的元件則可以得到比較低的暗電流和雜訊。 在本論文中的第一部份,我們討論的有無鋁砷化鎵覆蓋層之光檢測器的電特性,有覆蓋層的光檢器在能帶表現上,會有一個能帶的不連續性出現,如此一來將使得元件的暗電流與光電流皆有下降的趨勢,然而暗電流下降的趨勢比光電流更強烈,因此我們可以利用有覆蓋層的光檢測器來得到比較好的光暗電流比與光響應度比。 在本論文中的第二部份,我們比較氮砷化銦鎵與砷化銦鎵多重量子井的電特性,之後我們也比較三對與五對氮砷化銦鎵多重量子井電特性上的差異,最後我們可以發現具有覆蓋層的三對氮砷化銦鎵多重量子井元件電特性會在最佳,其光暗電流比為100000倍,同時其光響應比有200倍而理想因子為1.407。

English Abstract

In this thesis, we used the novel multiple quantum wells (MQWs) laser structure as our photodetector structure. The GaInNAs/GaAs MQWs was used as the absorption layer of photodetectors by metal organic vapor phase epitaxy (MOVPE). Lattice-mismatch between GaInNAs and GaAs can be reduced by incorporating proper amount of indium and nitrogen and thus the defects due to lattice mismatch can be reduced. Also, the photodetectors with excellent quality demonstrate lower dark current and noise. In the first part, we discuss the electric characteristics of photodetectors with and without cladding layer”AlGaAs”. The cladding layer”AlGaAs” in our photodetector structure will form a double heterostructure, than the valence band discontinuity (∆Ev) and conduction band discontinuity (∆Ec) will occurs. Although the band discontinuities will suppress both the dark current and photocurrent, the decrease of photocurrent is less significantly compared to that of dark current. Consequently, the photodetectors with cladding layer will has the higher photo/dark current contrast ratio and responsivity rejection ratio. In the next part, we compare the electric characteristics between the GaInNAs/GaAs and InGaAs/GaAs multiple quantum well laser structure. Also, we compare the difference between 3 and 5 periods of GaInNAs/GaAs multiple quantum well. The best choice is the 3 periods of GaInNAs/GaAs multiple quantum well laser structure with cladding layer”AlGaAs” which the photo/dark current contrast ratio and responsivity are 100000 and two orders at -2V and its ideal factor is 1.417.

Topic Category 理學院 > 光電科學與工程研究所
工程學 > 電機工程
  1. [5]W. G. Bi and C. W. Tu, Appl. Phys. Lett., 70, 1068, (1997).
  2. [10]S. M. Spaziani, K. Vaccaro and J. P. Lorenzo, “High performance substrate-removed InGaAs schottky photodetectors”, IEEE Photon. Technol. Lett., 10, 1144, (1998).
  3. [11]R. H. Yuang and J.-I. Chyi, “Effects of finger width on large-area InGaAs MSM photodetectors”, IEEE Electron. Lett., 32, 131, (1996).
  4. [12]Winston K. Chan, Gee-Kung Chang, Rajaram Bhat, N. E. Schlotter and C. K. Nguyen, “High-speed Ga0.47In0.53As MISIM photodetectors with dielectric-assisted schottky barriers”, IEEE Electro Device Lett., 10, 417, (1989).
  5. [13]A. Ketterson, J-W. Seo, M. Tong, K. Nummila, D. Ballegeer, S.-M. Kang, K. Y. Cheng, and I. Adesida, “A 10 GHz bandwidth pseudo-morphic GaAs/InGaAs/AIGaAs MODFET-based OEIC receiver”, (1992).
  6. [14]G. K. Chang, W. P. Hong, R. Bhat, C. K. Nguyen, H. Shirokmann, L. Wang, J. L. Gimlett, J. Young, C. Lin, and J. R. Hayes, “A novel electronically switched four-channel receiver using InAlAs-InGaAs MSM-HEMT technology for wavelength-division-multiplexing systems”, IEEE Photon. Technol. Lett., 3, 475-477, (1991).
  7. [15]J. H. Kim, H. T. Griem, R. A. Friedman, E. Y. Chan, and S. Ray, “High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W”, IEEE Photon. Technol. Lett., 4, 1241-1244, (1992).
  8. [16]D. G. Parker and P. G. Say, “Indium tin oxide/GaAs photodiodes for millimetric-wave applications”, Electron. Lett., 22, 1266-1267, (1988).
  9. [17]J-W. Seo, A. A. Ketterson, D. G. Ballegeer, K-Y. Cheng, I. Adesida, X. Li, and T. Gessert, “A comparative study of metal-semiconductor-metal photodetectors on GaAs with indium-tin-oxide and Ti/Au electrodes”, IEEE Photon. Technol. Lett., 4, 888-890, (1992).
  10. [18]P. R. Berger, N. K. Dutta, G. Zydzik, H. M. O’Bryan, U. Keller, P. R. Smith, J. Lopata, D. Sivco, and A. Y. Cho, “InGaAs p-i-n photodiodes with transparent cadmium tin oxide contacts”, Appl. Phys. Lett., 61, 1673-1675, (1992).
  11. [19]J. C. Campbell, AT&T Bell Lab. Technical Memorendum (unpublished).
  12. [20] S. M. Sze, “Semiconductor Devices Physics and Technology”, Ch. 3
  13. [22]G. Dearnaley, J. H. Freeman, R. S. Nelson, Stephen, “Ion-Implantation”, Ch. 5 Applications to semiconductors, p. 561.
  14. [23] S. R. Forrest, M. DiDomenico, Jr., R. G. Smith, H. J. Stocker,“Evidence For Tunneling in Reverse-Biased III-V Photodetector Diodes”, Appl. Phys. Lett, 36, 580-586, (1980).
  15. [24] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack,“In0.53Ga0.47As Photodiode With Dark Current Limited by Generation-Recombination And tunneling”, Appl. Phys. Lett., 37, 217-220,(1981).
  16. [22] J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974)
  17. [1]S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, and B. E. Hammons, Appl. Phys. Lett., 74, 729, (1999).
  18. [2]J. F. Geisz, D. J. Friedman, J. M. Olson, Sarah R. Kurtz, and B. M. Keyes, J. Cryst. Growth, 195, 401, (1998).
  19. [3]D. J. Friedman, J. F. Geisz, Sarah R. Kurtz, and J. M. Olson, J. Cryst. Growth, 195, 409, (1998).
  20. [4]M. Kondow, S. I. Nakatsuka, T. Kitatani, Y. Yazawa, and M. Okai, Jpn. J. Appl. Phys., Part 1 35, 5711, (1996).
  21. [6]K. Nakahara, M. Kondow, T. Kitatani, M. C. Larson, and K. Uomi, IEEE Photonics Technol. Lett., 10, 487, (1998).
  22. [7]B. Sung, H. C. Chui, M. M. Fejer, and J. S. Harris, Jr., Electron. Lett., 33, 818, (1997).
  23. [8]J. Y. Duboz, J. A.Gupta, M. Byloss, G. C. Aers, H. C. Liu, and Z. R. Wasilewski, Appl. Phys. Lett., 81, 1836, (2002).
  24. [9]E. Luna, M. Hopkinson, J. M. Ulloa, A. Guzman, and E. Munoz, Appl. Phys. Lett., 83, 3111, (2003).
  25. [21] Jasprit Singh, “Semiconductor Optoelectronics Physics andTechnology”, Ch. 6 Semiconductor junction theory, p. 286.
  26. [23] R. Grey, J. P. R. David, P. A. Claxton, F. Gonzalez Sanz, and J. Woodhead, J. Appl. Phys. 66, 975 (1989).
  27. [24] J. P. R. David, G. Grey, M. A. Pate, P. A. Claxton, and J. Woodhead, J. Electron. Mater. 20, 295 (1991).
  28. [25] M. Ghisoni, G. Parry, L. Hart, and C. Roberts, Appl. Phys. Lett. 65, 3323 (1994).
  29. [26] M. J. Ekenstedt, W. Q. Chen, T. G. Andersson, and J. Thordson, Appl. Phys. Lett. 65, 3242 (1994).
  30. [27] E. C. Larkins, G. Bender, H. Schneider, J. D. Ralston, J. Wagner, W. Rothermund, B. Dischler, J. Fleissner, and P. Koidl, J. Cryst. Growth 127, 62 (1993).
  31. [28] G. Bender, E. C. Larkins, H. Schneider, J. D. Ralston, and P. Koidl, Appl. Phys. Lett. 63, 2920 (1993).
  32. [29] H. Temkin, D. G. Gershoni, S. N. G. Chu, J. M. Vandenberg, R. A. Hamm, and M. B. Panish, Appl. Phys. Lett. 16, 1668 (1989).
  33. [30] 9F. M. Ross, R. Hull, D. Bahnck, J. C. Bean, L. J. Peticolas, and C. A. King, Appl. Phys. Lett. 62, 1426 (1993).