Title

側鏈型電激發光高分子與磷光主體高分子的合成與光電性質探討

Translated Titles

The Synthesis and Optoelectronic Properties of Electroluminescent and Phosphorescent Host Polymers

Authors

葉昆明

Key Words

有機電激發光材料 ; 有機發光二極體 ; 高分子合成 ; Copolymerization ; Light-emitting diode (LEDs) ; Luminescence

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

博士

Advisor

陳雲

Content Language

英文

Chinese Abstract

本論文主要合成一系列新的側鏈型有機發光二極體用高分子材料,並將這些材料分別應用於螢光與磷光發光元件,並提高元件發光效率。應用於螢光的側鏈孤立高分子PSDSB、PSOXD、PSOXD12、PSBOXD12與主鏈孤立高分子PDSBB、PDSBOXD主要包含1,4-二苯乙烯苯(1,4-distyrylbenzene)與1,3,4-噁二唑(1,3,4-oxadiazole)衍生物。這些高分子可溶於一般有機溶劑,如甲苯、氯仿等,並且具有大於360°C的熱裂解溫度。由PL光譜顯示PSDSB上的烷氧側鏈可以防止分子鏈間的堆疊,進而降低分子間作用力。由循環伏安法(CV)求得高分子的HOMO與LUMO能階。相較於發光共軛高分子MEH-PPV,高分子PSOXD12具有較低的HOMO與LUMO能階。利用簡單的摻混方法,將PSOXD12摻混於MEH-PPV中,成功的解決MEH-PPV在高分子有機電激發光二極體應用上的兩大問題:分子間激發態與電子、電洞注入/傳遞不平衡。另外,由PL光譜與元件EL光譜顯示加入PSOXD12於MEH-PPV也可改善發光光色不純的問題。由於有效降低分子間激發態的產生並且改善電子、電洞注入/傳遞不平衡,元件效能有顯著提升(16261 cd/m2, 4.79 cd/A)。利用發藍光的PDSB與發綠光的[PVK:Ir(ppy)3]摻混,可以依不同摻混比例改變元件發光的顏色,隨著PDSB摻混比例的增加,C.I.E.色度座標由(0.29,0.61)位移至(0.25,0.35)。本論文也合成了一系列含有咔唑(carbazole)、1,3,4-噁二唑與三苯基胺(triphentlamine)磷光主體高分子PCzOxd與PTPA。由PCzOxd與Ir(ppy)3摻混的PL與EL光譜顯示PCzOxd將其能量有效率的轉移給Ir(ppy)3使其發光。由PCzOxd16與Ir(ppy)3摻混所製成的元件(ITO/PEDOT:PSS/PCzOxd16:Ir(ppy)3/BCP/Ca/Al)可以得到最佳的元件效能(19903 cd/m2 and 17.9 cd/A)。由AFM與SEM結果顯示,相較於PCzOxd20,含有烷氧末端基的PCzOxd20與Ir(ppy)3具有較佳的相容性,所以具有較佳的元件效能。由低溫磷光光譜求得PTPA的三重激發態能量為2.78 eV,由於PTPA的三重激發態能量大於Ir(ppy)3(2.6 eV)將可防止Ir(ppy)3將能量回傳給PTPA。由於PTPA具有親電洞特性可使電洞注入能障降低,並使元件操作電壓降低。由PTPA與Ir(ppy)3摻混的PL與EL光譜顯示PTPA將其能量有效率的轉移給Ir(ppy)3使其發光。由PTPA與Ir(ppy)3摻混所製成的元件(ITO/PEDOT:PSS/ PTPA:Ir(ppy)3(1 wt%):PBD(40 wt%)/Ca/Al)可以得到最佳的元件效能(8358 cd/m2 and 4.5 cd/A)。

English Abstract

Polymer light-emitting diodes (PLEDs) based on fluorescent and phosphorescent electroluminescence (EL) have attracted great attention currently, and been extensively investigated. In this dissertation, a series of side-chain polymers containing pendant 1,4-distyrylbenzene, 1,3,4-oxadiazole, carbazole, and/or triphenylamine chromophores were designed and synthesized. All new synthesized monomers and polymers were identified by 1H NMR, FT-IR, and elemental analysis (EA). Thermal properties of these polymers were determined using TGA and DSC. The optical, electrochemical, and electroluminescent properties of these polymers were investigated. The research was carried out in two parts. In Part I, PLEDs based on fluorescent EL were investigated (chapter 4~6). Vinyl copolymers PSDSB, PSOXD, PSOXD12, and PSBOXD12 containing pendant 1,4-distyrylbenzene or aromatic 1,3,4-oxadiazole derivatives from their precursor copolymer PSV-2 were synthesized. Two main chain polymers containing similar isolated 1,4-distyrylbenzene (PDSBB) and aromatic 1,3,4-oxadiazole (PDSBOXD) chromophores were also synthesized for comparative study. The resulted copolymers are soluble in common organic solvents, and are basically amorphous materials with 5% weight-loss temperatures higher than 360°C. The PL spectral results reveal that the architecture of PSDSB prevents the formation of inter- or intra-molecular interaction and that of PSOXD12 and PSBOXD12 suppress the aggregate formation in solid state. The emission of blend from PSDSB and PSOXD are contributed mainly from distyrylbenzene fluorophore (ca. 450 nm) owing to efficient energy transfer. The HOMO and LUMO levels of PSOXD, estimated from cyclic voltammetric data, are -5.96 eV and -3.81 eV, respectively, which are much lower than those of PSDSB (-5.12 eV and -3.11 eV). Moreover, the blend exhibits three kinds of redox behavior depending on their weight ratios. In addition, both HOMO and LUMO levels of PSOXD, PSOXD12, PSBOXD12 are much lower than MEH-PPV owing to electron-withdrawing characteristics of the pendant aromatic 1,3,4-oxadiazole groups. The luminance (5860 cd/m2) and current efficiency (1.45 cd/A) of the EL device (ITO/PEDOT/MEH-PPV/Al) has been improved significantly to 16261 cd/m2 and 4.79 cd/A, respectively, by blending with PSOXD12 (50/50). The addition of PSOXD12 in MEH-PPV reduces the inter-chain interaction and balances charge carrier transport simultaneously. PL, PL excitation and EL spectra of the blends reveal that the inter-chain interactions, such as aggregation and excimer/exciplex, are reduced markedly due to the presence of PSOXD12. The present study suggests that the copolymers PSOXD, PSOXD12, PSBOXD12 are versatile materials for electron-transporting/injecting applications. In Part II, PLEDs based on phosphorescent EL were investigated (chapter 7~9). Vinyl polymer PDSB containing pendant 1,4-distyrylbenzene from its precursor copolymer PSV-1, vinyl copolymers PCzOxd containing pendant carbazole and dodecyloxy-1,3,4-oxadiazole chromophores from their corresponding precursor copolymers PCzBc, and vinyl polymer PTPA containing pendant triphenylamine chromophores were synthesized. In chapter 7, the blend films of blue emitter (PDSB) and green system [PVK/Ir(ppy)3] were prepared to tune color emission. The blend films [PVK:PDSB:Ir(ppy)3] show composition-dependent behavior in PL spectral properties and EL characteristics. The C.I.E. 1931 coordinates of the blend LED devices shift from (0.29, 0.61) for PVK:PDSB = 10:0 to (0.25, 0.35) for PVK:PDSB = 0:10 with the increase of PDSB content. In chapter 8, copolymers PCzOxd have been used as host materials for the applications in green phosphorescent light-emitting diodes. The phosphorescent EL device have been fabricated with the single-emitting-layer configuration of ITO/PEDOT:PSS/host copolymers:Ir(ppy)3/BCP/Ca/Al. The PL and EL spectra of the blends [PCzOxd:Ir(ppy)3] showed dominant green emission attributed to Ir(ppy)3 due to efficient energy transfer from host to Ir(ppy)3. Efficient green phosphorescent OLEDs was obtained when employing copolymer PCzOxd16 as the host and Ir(ppy)3 as the guest. The maximal luminance efficiency and the maximal luminance of this device were 17.9 cd/A and 19903 cd/m2, respectively. The morphology of the controlled PCzOxd20 and attached dodecyloxy PCzOxd20 films doped with Ir(ppy)3 were investigated by tapping-mode AFM and FE-SEM. The film of PCzOxd20 doped with Ir(ppy)3 exhibits uniform, featureless image and shows better device performance than PCzOxd20, which mainly results from good chemical compatibility for Ir(ppy)3-doped blend film. In chapter 9, PTPA containing pendant triphenylamine chromophores, which possesses hole-transport characteristics, was first used as a host material in green phosphorescent light-emitting diodes. The PL spectrum of PTPA showed an intrinsic peak (375 nm) attributed to triphenylamine groups and an excimer emission (440 nm). The PL and EL spectra of the blends [PTPA:Ir(ppy)3] showed dominant green emission attributed to Ir(ppy)3 due to efficient energy transfer from PTPA to Ir(ppy)3. The HOMO level of PTPA was -5.36 eV, which is higher than -5.8 eV of PVK owing to hole-affinity characteristics of the pendant triphenylamine groups. The best performance was obtained with the EL device (ITO/PEDOT:PSS/ PTPA:Ir(ppy)3(1 wt%):PBD(40 wt%)/Ca/Al), the maximal luminance and the maximal luminance efficiency were 8358 cd/m2 and 4.5 cd/A, respectively. The present study suggests that the polymer PTPA is versatile host materials for green phosphorescent polymer light-emitting diodes applications.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. Chapter 1
    連結:
  2. [2] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 14 (1965).
    連結:
  3. [4] C. W. Tang, S. A. Vanslyker, Appl. Phys. Lett., 51, 913 (1987).
    連結:
  4. [10] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys., 27, 269 (1988).
    連結:
  5. [11] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 55, 1489 (1989).
    連結:
  6. [14] D. Dini, Chem. Mater., 17, 1933 (2005).
    連結:
  7. [16] A. Köhler, J. Wilson, Org. Electron., 4, 179 (2003).
    連結:
  8. [21] J. Kido, K. Nagai, Y. Ohashi, Chem. Lett., 657 (1990).
    連結:
  9. [27] W. A. Braunecker, K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007).
    連結:
  10. [28] M. Szwarc, Nature, 178, 1168 (1956).
    連結:
  11. [29] O. W. Webster, Science, 251, 887 (1991).
    連結:
  12. [31] M. Sawamoto, Progr. Polym. Sci., 16, 111 (1991).
    連結:
  13. [32] D. Greszta, D. Mardare, K. Matyjaszewski, Macromolecules, 27, 638 (1994).
    連結:
  14. [34] K. Matyjaszewski, J. Xia, Chem. Rev., 101, 2921 (2001).
    連結:
  15. [35] M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev., 101, 3689 (2001).
    連結:
  16. [37] Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules, 32, 2071 (1999).
    連結:
  17. [39] A. Kraft, A. C. Grimsdale, A. B. Holmes, Angew. Chem. Int. Ed., 37, 402 (1998).
    連結:
  18. [40] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
    連結:
  19. [42] M. R. Andersson, G. Yu, A. J. Heeger, Synth. Met., 85, 1275 (1997).
    連結:
  20. [43] J. Salbeck, B. Bunsenges, J. Phys. Chem., 100, 1666 (1996).
    連結:
  21. [44] Y. Yang, Q. Pei, Appl. Phys. Lett., 81, 3294 (1997).
    連結:
  22. [45] G. Klaerner, R. D. Miller, Macromolecules, 31, 2007 (1998).
    連結:
  23. [47] Y. Ohmori, M. Uchida, K. Muro, K. Yoshino, Jpn. J. Appl. Phys., 30, 1941 (1991).
    連結:
  24. [49] N. G. Pschirer, K. Byrd, U. H. F. Bunz, Macromolecules, 34, 8590 (2001).
    連結:
  25. [52] Y. Yang, Q. Pei, J. Appl. Phys., 77, 4807 (1995).
    連結:
  26. [54] T.-Y. Wu, R.-B. Sheu, Y. Chen, Macromolecules, 37, 725 (2004).
    連結:
  27. [56] Z. Peng, J. Zhang, Chem.Mater., 11, 1138 (1999).
    連結:
  28. [57] Q. Pei, Y. Yang, Adv. Mater., 7, 559 (1995).
    連結:
  29. [59] R. M. Tarkka, X. Zhang, S. A. Jenecke, J. Am. Chem. Soc., 118, 9438 (1996).
    連結:
  30. [63] S.-W. Hwang, Y. Chen, Macromolecules, 35, 5438 (2002).
    連結:
  31. [64] Y. Chen, S.-W. Hwang, S.-H. Chen, J. Polym. Sci. Part B: Polym. Phys., 42, 333 (2003).
    連結:
  32. [65] J. Sanetra, S. Niziol, J. Pielichowski, Mol. Cryst. Liq. Cryst., 353, 387 (2000).
    連結:
  33. [69] J. Hido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett., 64, 815 (1994).
    連結:
  34. [71] K. Lmimouni, C. Legrand, A. Chapoton, Synth. Met., 97, 151(1998).
    連結:
  35. [72] J.-F. Morin, M. Leclerc, Macromolecules, 34, 4680 (2001).
    連結:
  36. [73] J.-F. Morin, M. Leclerc, Macromolecules, 35, 8413 (2002).
    連結:
  37. [76] Y. Shirota, T. Kobata, N. Noma, Chem. Lett., 1145 (1989).
    連結:
  38. [89] M. Aguiar, F. E. Karasz, B. Hu, L. Akcelrud, Macromol. Chem. Phys., 199, 1255 (1998).
    連結:
  39. [96] M. E. Thompson, P. E. Burrows, S. R. Forrest, Curr. Opin. Solid State Mater. Sci., 4, 369 (1999).
    連結:
  40. [1] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy”, 2nd ed., Kluwer Academic/ Plenum, New York, 1999, chapter 1.
    連結:
  41. [4] L. Akcelrud, Prog. Polym. Sci., 28, 875 (2003).
    連結:
  42. [6] G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett., 80, 4247 (2002).
    連結:
  43. [7] Z. H. Kafafi, “Organic Electroluminescence”, US Naval Research Lab, Washington, DC, USA, 2005, p.276.
    連結:
  44. [8] V. May, O. Kuhn, “Charge and Energy Transfer Dynamics in Molecular Systems”, 2nd ed., Wiley-VCH, 2003, chapter 8.
    連結:
  45. [10] E. F. Schubert, “Light-Emitting Diodes”, 1st ed., Cambridge University Press, 2003, chapter 11.
    連結:
  46. [11] D. W. Roger, “Computational Chemistry Using the PC”, 3rd ed., Wiley-Interscience, 2003, chapter 3.
    連結:
  47. [1] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    連結:
  48. [6] M. Aguiar, F. E. Karasz, L. Akcelrud, Macromolecules, 28, 4598 (1995).
    連結:
  49. [7] L. D. Lu, S. A. Jenekhe, Macromolecules, 34, 6249 (2001).
    連結:
  50. [8] G. Moad, D. H. Solomon, “The Chemistry of Free Radical Polymerization” Pergamon, Oxford, England, 1995.
    連結:
  51. [10] E. E. Malmström, C. J. Hawker, Macromol. Chem. Phys., 199, 923 (1998).
    連結:
  52. [11] T. E. Patten, K. Matyjaszewski, Adv. Mater., 10, 901 (1998).
    連結:
  53. [12] K. Matyjaszewski, Chem. Eur. J., 5, 3095 (1999).
    連結:
  54. [13] H. Shinoda, K. Matyjaszewski, Macromol. Rapid. Commun., 22, 1176 (2001).
    連結:
  55. [14] J. F. Quinn, L. Barner, E. Rizzardo, T. P. Davis, J. Polym. Sci. Part A: Polym. Chem., 40, 19 (2002).
    連結:
  56. [15] Y. K. Chong,; T. P. T. Le, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules, 32, 2071 (1999).
    連結:
  57. [16] S. Perrier, P. Takolpuckdee, J. Polym. Sci. Part A: Polym. Chem., 43, 5347 (2005).
    連結:
  58. [17] M. J. Monteiro, J. Polym. Sci. Part A: Polym. Chem., 43, 3189 (2005).
    連結:
  59. [18] H. Meng, W. L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    連結:
  60. [21] B.-Y. Hsieh, K.-M. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 43, 5009 (2005).
    連結:
  61. [22] H.-H. Sung, H.-C. Lin, J. Polym. Sci. Part A: Polym. Chem., 43, 2700 (2005).
    連結:
  62. [23] N. P. Tzanetos, J. K. Kallitsis, J. Polym. Sci. Part A: Polym. Chem., 43, 1049 (2005).
    連結:
  63. [24] J. A. Mikroyannidis, H. Hlídková, D. Výprachtický, V. Cimrová, J. Polym. Sci. Part A: Polym. Chem., 43, 3079 (2005).
    連結:
  64. [25] S.-W. Hwang, Y. Chen, Macromolecules, 34, 2981 (2001).
    連結:
  65. [27] S.-W. Hwang, S.-H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 40, 2215 (2002).
    連結:
  66. [28] Y.-H. Yu, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 41, 2765 (2003).
    連結:
  67. [29] Y. Chen, S.-W. Hwang, Y.-H. Yu, Polymer, 44, 3827 (2003).
    連結:
  68. [30] S.-H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 42, 5900 (2004).
    連結:
  69. [31] J. L. Hedrick, R. Twieg, Macromolecules, 25, 2021 (1992).
    連結:
  70. [35] G. Odian, “Principles of Polymerization” Wiley-Interscience, New York, 2004, Chapter 3.
    連結:
  71. [37] C. Weder, M. S. Wrighton, Macromolecules, 29, 5157 (1996).
    連結:
  72. [38] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
    連結:
  73. [39] J. R. Lakowicz, “Principles of Fluorescence Spectroscopy” Kluwer Academic, New York, 1999, Chapter 13.
    連結:
  74. Chapter 5
    連結:
  75. [1] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    連結:
  76. [5] M. Aguiar, F. E. Karasz, L. Akcelrud, Macromolecules, 28, 4598 (1995).
    連結:
  77. [6] L. D. Lu, S. A. Jenekhe, Macromolecules, 34, 6249 (2001).
    連結:
  78. [7] G. Moad, D. H. Solomon, “The Chemistry of Free Radical Polymerization” Pergamon, Oxford, England, 1995.
    連結:
  79. [8] C. J. Hawker, K. L. Wooley, Science, 309, 1200 (2005).
    連結:
  80. [10] E. E. Malmström, C. J. Hawker, Macromol. Chem. Phys., 199, 923 (1998).
    連結:
  81. [11] T. E. Patten, K. Matyjaszewski, Adv. Mater., 10, 901 (1998).
    連結:
  82. [12] K. Matyjaszewski, Chem. Eur. J., 5, 3095 (1999).
    連結:
  83. [13] H. Shinoda, K. Matyjaszewski, Macromol. Rapid. Commun., 22, 1176 (2001).
    連結:
  84. [14] J. F. Quinn, L. Barner, E. Rizzardo, T. P. Davis, J. Polym. Sci. Part A: Polym. Chem., 40, 19 (2002).
    連結:
  85. [15] Y. K. Chong,; T. P. T. Le, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules, 32, 2071 (1999).
    連結:
  86. [16] S. Perrier, P. Takolpuckdee, J. Polym. Sci. Part A: Polym. Chem., 43, 5347 (2005).
    連結:
  87. [17] M. J. Monteiro, J. Polym. Sci. Part A: Polym. Chem., 43, 3189 (2005).
    連結:
  88. [18] H. Meng, W. L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    連結:
  89. [23] B.-Y. Hsieh, K.-M. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 43, 5009 (2005).
    連結:
  90. [24] H.-H. Sung, H.-C. Lin, J. Polym. Sci. Part A: Polym. Chem., 43, 2700 (2005).
    連結:
  91. [25] N. P. Tzanetos, J. K. Kallitsis, J. Polym. Sci. Part A: Polym. Chem., 43, 1049 (2005).
    連結:
  92. [26] J. A. Mikroyannidis, H. Hlídková, D. Výprachtický, V. Cimrová, J. Polym. Sci. Part A: Polym. Chem., 43, 3079 (2005).
    連結:
  93. [27] G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett., 80, 4247 (2002).
    連結:
  94. [28] K.-M. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 44, 5362 (2006).
    連結:
  95. [31] G. Odian, “Principles of Polymerization” Wiley-Interscience, New York, 2004, Chapter 3.
    連結:
  96. [32] R. F. Heck, Acc. Chem. Res., 12, 146 (1979).
    連結:
  97. [33] Y. Qiu, J. Qiao, Thin Solid Films, 372, 265 (2000).
    連結:
  98. [34] C.-J. Tsai, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 40, 293 (2002).
    連結:
  99. [37] C. Weder, M. S. Wrighton, Macromolecules, 29, 5157 (1996).
    連結:
  100. [38] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
    連結:
  101. [39] S.-H. Chen, Y. Chen, Macromolecules, 38 , 53 (2005).
    連結:
  102. [41] Y.-Z. Lee, X. Chen, S.-A. Chen, P.-K. Wei, W.-S. Fann, J. Am. Chen. Soc., 123, 2296 (2001).
    連結:
  103. Chapter 6
    連結:
  104. [1] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    連結:
  105. [5] G. He, Y. Li, J. Liu, Y. Yang, Appl. Phys. Lett., 80, 4247 (2002).
    連結:
  106. [6] H. Meng, W. L. Yu, W. Huang, Macromolecules, 32, 8841 (1999).
    連結:
  107. [8] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 55, 1489 (1989).
    連結:
  108. [10] S.-W. Hwang, Y. Chen, Macromolecules, 35, 5438 (2002).
    連結:
  109. [12] K.-M. Yeh, Y. Chen, J. Polym. Sci.: Part A: Polym. Chem., 45, 2259 (2007).
    連結:
  110. [14] Z. Yu, P. F. Barbara, J. Phys. Chem. B, 108, 11321 (2004).
    連結:
  111. Chapter 7
    連結:
  112. [6] C.-L. Lee, K. B. Lee, J.-J. Kim, Appl. Phys. Lett., 77, 2280 (2000).
    連結:
  113. [7] M.-J. Yang, T. Tsutsui, Jpn. J. Appl. Phys., 39, 828 (2000).
    連結:
  114. [12] C. Jiang, W. Yang, J. Peng, S. Xiao, Y. Cao, Adv. Mater., 16, 537 (2004).
    連結:
  115. [15] M. Klessinger, J. Michl, “Excited States and Photochemistry of Organic Molecules”, Wiley-VCH, New York, 1995.
    連結:
  116. [18] J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, Macromolecules, 38, 4072 (2005).
    連結:
  117. [19] Y. You, S. H. Kim, H. K. Jung, S. Y. Park, Macromolecules, 39, 346 (2006).
    連結:
  118. [22] H. Zhen, C. Jiang, W. Yang, J. Jiang, F. Huang, Y. Cao, Chem. Eur. J., 11, 5007 (2005).
    連結:
  119. [26] M. Aguiar, F. E. Karasz, L. Akcelrud, Macromolecules, 28, 4598 (1995).
    連結:
  120. [27] L. D. Lu, S. A. Jenekhe, Macromolecules, 34, 6249 (2001).
    連結:
  121. [28] K.-H. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 44, 5362 (2006).
    連結:
  122. [29] S.-H. Chen, Y. Chen, Macromolecules, 38, 53 (2005).
    連結:
  123. [30] S.-H. Chen, Y. Chen, Polymer, 46, 10544 (2005).
    連結:
  124. [31] Y. Chen, S.-W. Hwang, Y.-H. Yu, Polymer, 44, 3827 (2003).
    連結:
  125. [32] Y.-H. Yu, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 21, 2765 (2003).
    連結:
  126. [33] Y. Chen, S.-P. Lai, J. Polym. Sci. Part A: Polym. Chem., 19, 2571 (2001).
    連結:
  127. [34] H. Shinoda, K. Matyjaszewski, Macromol. Rapid. Commun., 22, 1176 (2001).
    連結:
  128. [37] G. Odian, “Principles of Polymerization”, Wiley-Interscience, New York, 2004, Chapter 3.
    連結:
  129. Chapter 8
    連結:
  130. [6] C.-L. Lee, K. B. Lee, J.-J. Kim, Appl. Phys. Lett., 77, 2280 (2000).
    連結:
  131. [7] M.-J. Yang, T. Tsutsui, Jpn. J. Appl. Phys., 39, 828 (2000).
    連結:
  132. [12] C. Jiang, W. Yang, J. Peng, S. Xiao, Y. Cao, Adv. Mater., 16, 537 (2004).
    連結:
  133. [16] C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 55, 1489 (1989).
    連結:
  134. [18] S.-W. Hwang, Y. Chen, Macromolecules, 35, 5438 (2002).
    連結:
  135. [22] J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, Macromolecules, 38, 4072 (2005).
    連結:
  136. [26] H. Zhen, C. Jiang, W. Yang, J. Jiang, F. Huang, Y. Cao, Chem. Eur. J., 11, 5007 (2005).
    連結:
  137. [27] X. Jiang, R. A. Register, K. A. Killeen, M. E. Thompson, F. Pschenitzka, J. C. Sturm, Chem. Mater., 12, 2542 (2000).
    連結:
  138. [28] K.-M. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 45, 2259 (2007).
    連結:
  139. [29] K.-M. Yeh, Y. Chen, J. Polym. Sci. Part A: Polym. Chem., 44, 5362 (2006).
    連結:
  140. [31] C. Weder, M. S. Wrighton, Macromolecules, 29, 5157 (1996).
    連結:
  141. [32] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
    連結:
  142. Chapter 9
    連結:
  143. [6] C.-L. Lee, K. B. Lee, J.-J. Kim, Appl. Phys. Lett., 77, 2280 (2000).
    連結:
  144. [7] M.-J. Yang, T. Tsutsui, Jpn. J. Appl. Phys., 39, 828 (2000).
    連結:
  145. [12] C. Jiang, W. Yang, J. Peng, S. Xiao, Y. Cao, Adv. Mater., 16, 537 (2004).
    連結:
  146. [15] M. Klessinger, J. Michl, “Excited States and Photochemistry of Organic Molecules”, Wiley-VCH, New York, 1995.
    連結:
  147. [18] J. Jiang, C. Jiang, W. Yang, H. Zhen, F. Huang, Y. Cao, Macromolecules, 38, 4072 (2005).
    連結:
  148. [19] Y. You, S. H. Kim, H. K. Jung, S. Y. Park, Macromolecules, 39, 349 (2006).
    連結:
  149. [22] H. Zhen, C. Jiang, W. Yang, J. Jiang, F. Huang, Y. Cao, Chem. Eur. J., 11, 5007 (2005).
    連結:
  150. [25] Y. Shirota, T. Kobata, N. Noma, Chem. Lett., 18, 1145 (1989).
    連結:
  151. [30] Y. Qiu, J. Qiao, Thin Solid Films, 372, 265 (2000).
    連結:
  152. [36] L. Ding, F. E. Karasz, Y. Lin, Y. Pang, L. Liao, Macromolecules, 36, 7301 (2003).
    連結:
  153. [1] M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys., 38, 2042 (1963).
  154. [3] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature, 357, 477 (1992).
  155. [5] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys., 65, 3610 (1989).
  156. [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539 (1990).
  157. [7] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998).
  158. [8] M. A. Baldo, S. Lamansky, P. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
  159. [9] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
  160. [12] J. Kido, M. Khoda, K. Okuyama, K. Nagai, Appl. Phys. Lett., 61, 761 (1992).
  161. [13] J. Kido, K. Hongavwa, M. Khoda, K. Nagai, K. Okuyama, Jpn. J. Appl. Phys., 31, 960 (1992).
  162. [15] A. Köhler, J. S. Wilson, R. H. Friend, Adv. Mater., 14, 701 (2002).
  163. [17] M. A. Baldo, D. F. O’Brien, M. E. Thompson, S. R. Forrest, Phys. Rev. B, 60, 14422 (1999).
  164. [18] J. S. Wilson, A. S. Dhoot, A. J. A. B. Seeley, M. S. Khan, A. Köhler, R. H. Friend, Nature, 413, 828 (2001).
  165. [19] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B: Condens. Matter., 68, 075211 (2003).
  166. [20] M. Reufer, M. J. Walter, P. G. Lagoudakis, A. B. Hummel, J. S. Kolb, H. G. Roskos, U. Scherf, J. M. Lupton, Nat. Mater., 4, 340 (2005).
  167. [22] R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, M. E. Thompson, Chem. Mater., 11, 3709 (1999).
  168. [23] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater., 17, 1109 (2005).
  169. [24] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).
  170. [25] V. Cleave, G. Yahioglu, P. Le Barny, D.-H. Hwang, A. B. Holmes, R. H. Friend, N. Tessler, Adv. Mater., 13, 44 (2001).
  171. [26] P. A. Lane, L. C. Palilis, D. F. O’Brien, C. Giebeler, A. J. Cadby, D. G. Lidzey, A. J. Campbell, W. Blau, D. D. C. Bradley, Phys. Rev. B, 63, 235206 (2001).
  172. [30] S. Penczek, P. Kubisa, K. Matyjaszewski, Adv. Polym. Sci., 68, 1 (1985).
  173. [33] M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules, 26, 2987 (1993).
  174. [36] J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, Macromolecules, 31, 5559 (1998).
  175. [38] P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, A. Kraft, J. Chem. Soc. Perkin Trans. I, 3225 (1992).
  176. [41] F. Wudl, S. Höger, C. Zhang, K. Pakbaz, A. J. Heeger, Polym. Prepr., 34, 197 (1993).
  177. [46] M. Kreyenschimdt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, Macromolecules, 31, 1099 (1998).
  178. [48] J.-I. Lee, G. Klärner, R. D. Miller, Chem. Mater., 11, 1083 (1999).
  179. [50] V. N. Bliznyuk, S. A. Carter, J. C. Scott JC, G. Klärner, R. D. Miller, Macromolecules, 32, 361 (1999).
  180. [51] M. Strukelj, F. Papadimitrakopoulos, T. M. Miller, L. J. Rothberg, Science, 267, 1969 (1995).
  181. [53] Z. Peng, Z. Bao, M. E. Galvin, Adv. Mater., 10, 680 (1998).
  182. [55] Z. K. Chen, H. Meng, Y. H. Lai, W. Huang, Macromolecules, 32, 4351 (1999).
  183. [58] J. W. Jang, D. K. Oh, C. H. Lee, C. E. Lee, D. W. Lee, J.-I. Jin, J. Appl. Phys., 87, 3183 (2000).
  184. [60] B. K. An, Y. H. Kim, D. C. Shin, S. Y. Park, H. S. Yu, S. K. Kwon, Macromolecules, 34, 3993 (2001).
  185. [61] W. Zhu, Y. Hu, H. Tian, Synth. Met., 111, 477 (2000).
  186. [62] W. L. Yu, H. Meng, J. Pei, W. Huang, J. Am. Chem. Soc., 120, 11808 (1998).
  187. [66] J.-K. Lee, D.-H. Hwang, J. Hwang, H.-K. Jung, T. Zyung, S. Y. Park, Synth. Met., 111, 489 (2000).
  188. [67] J. Sanetra, P. Armatys, R. Chrzaszcz, J. Pielichowski, P. Barta, S. Niziol, B. Sahraoui, Synth. Met., 101, 82 (1999).
  189. [68] J. F. Morin, S. Beaupre, M. Leclerc, I. Levesque, M. Diorio, Appl. Phys. Lett., 80, 341 (2002).
  190. [70] D. B. Romero, M. Schaer, M. Leclerc, D. Ades, A. Siove, L. Zuppiroli, Synth. Met., 80, 271 (1996).
  191. [74] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules, 32, 1482 (1999).
  192. [75] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Appl. Phys. Lett., 65, 807 (1994).
  193. [77] S. Jin, J. Jung, I. Yeom, S. Moon, K. Koh, S. Kim, Y. Gal, Eur. Polym. J., 35, 227 (1999).
  194. [78] Y. Pu, M. Soma, J. Kido, H. Nishide, Chm. Mater., 13, 3817 (2001).
  195. [79] H. S. Woo HS, O. Lhost, S. C. Graham, J. L. Brédas, R. Schenk, K. Mullen, Synth. Met., 59, 13 (1993).
  196. [80] B. Tian, G. Zerbi, R. Schenk, K. Mullen, J. Chem. Phys., 95, 3191 (1991).
  197. [81] S. Son, A. Dodabalapur, A. J. Lovinger, M. E. Galvin, Science, 269, 376 (1995).
  198. [82] P. L. Burn, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown, R. H. Friend, R. W. Gymer, Nature, 356, 47 (1992).
  199. [83] A. Kraft, P.L. Burn, A. B. Holmes, D. D. C. Bradley, A. R. Brown, R. H. Friend, R. W. Gymer, Synth. Met., 55, 936 (1993).
  200. [84] Z. Yang, B. Hu, F. E. Karasz, J. Macromol. Sci., Pure Appl. Chem., 35, 233 (1998).
  201. [85] R. G. Sun, Y. Z. Wang, G. B. Zheng, E. M. Kyllo, T. L. Gustafson, A. J. Epstein, Appl. Phys. Lett., 76, 634 (2000).
  202. [86] B. Hu, Z. Yang, F. E. Karasz, J. Appl. Phys., 76, 2419 (1994).
  203. [87] I. Sokolik, Z. Yang, D. C. Morton, F. E. Karasz, J. Appl. Phys., 74, 3584 (1993).
  204. [88] M. Aguiar, M. C. Fugihara, I. A. Hummelgen, L. O. Peres, J. R. Garcia, J. Gruber, L. Akcelrud, J. Lumin., 96, 219 (2002).
  205. [90] M. Aguiar, F. E. Karasz, B. Hu, L. Akcelrud, Synth. Met., 71, 2189 (1995).
  206. [91] P. Hesemann, H. Vestweber, J. Pommerehne, R. Mahrt, A. Greiner, Adv. Mater., 7, 388 (1995).
  207. [92] R. Sander, V. Stumpflen, J. H. Wendorff, A. Greiner, Macromolecules, 29, 7705 (1996).
  208. [93] C. Hochfilzer, S. Tasch, B. Winkler, J. Huslage, G. Leising, Synth. Met., 85, 1271 (1997).
  209. [94] T. M. Boyd, Y. Geerts, J. K. Lee, D. E. Fogg, G. G. Lavoie, R. R. Schrock, F. Rubner, Macromolecules, 30, 3553 (1997).
  210. [95] J. Bisberg, W. J. Cumming, R. A. Gaudiana, K. D. Hutchison, R. T. Ingwall, E. S. Kolb, P. G. Mehta, R. A. Minns, C. P. Petersen, Macromolecules, 28, 386 (1995).
  211. [97] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750 (2000).
  212. [98] T. Sajoto, P. I. Djurovich, A.Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, Inorg. Chem., 44, 7992 (2005)
  213. [99] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu, A. K.-Y. Jen, Adv. Mater., 15, 45 (2003).
  214. Chapter 2
  215. [2] D. A. Skoog, F. J. Holler, T. A. Nieman, “Principles of Instrumental Analysis”, 5th ed., Saunders Golden Sunburst Series, 1998, chapter 15.
  216. [3] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos, Phys. Rev. B, 68, 075211 (2003).
  217. [5] T.-Q. Nguyen, I. B. Martini, J. Liu, B. J. Schwartz, J. Phys. Chem. B, 104, 237 (2000).
  218. [9] S.-H. Chen, “The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments”, Doctoral Dissertation, National Cheng Kung University, 2006.
  219. [12] (a) http://en.wikipedia.org/wiki/Computational_chemistry (b) http://www.ym. edu.tw/~sysheu/summer/5-ST-MMFF-2005.pdf
  220. Chapter 4
  221. [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539 (1990).
  222. [3] D. Fichou, “Handbook of Oligo- and Polythiophenes” Wiley-VCH, Weinheim, 1999.
  223. [4] E. S. Kolb, R. A. Gaudiana, P. G. Mehta, Macromolecules, 29, 2359 (1996).
  224. [5] J. Bisberg, W. J. Cumming, R. A. Gaudiana, K. D. Hutchinson, R. T. Ingwall, E. S. Kolb, P. G. Mehta, R. A. Minns, C. P. Petersen, Macromolecules, 28, 386 (1995).
  225. [9] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 101, 3661 (2001).
  226. [19] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature, 365, 628 (1993).
  227. [20] A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater., 16, 4556 (2004).
  228. [26] Y. Chen, C.-K. Liao, T.-Y. Wu, Polymer, 43, 4545 (2002).
  229. [32] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, 36, 6577 (2003).
  230. [33] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, S. H. Thang, Polym. Int., 49, 993 (2000).
  231. [34] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta. Polym., 50, 105 (1999).
  232. [36] C. Weder, M. S. Wrighton, R. Spreiter, C. Bosshard, P. Gunter, J. Phys. Chem., 100, 18931 (1996).
  233. [40] MNDO semi-empirical calculations and molecular orbitals were performed with Gaussian R 98W and Gauss View 3.09 by Gaussian, Inc.
  234. [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539 (1990).
  235. [3] E. S. Kolb, R. A. Gaudiana, P. G. Mehta, Macromolecules, 29, 2359 (1996).
  236. [4] J. Bisberg, W. J. Cumming, R. A. Gaudiana, K. D. Hutchinson, R. T. Ingwall, E. S. Kolb, P. G. Mehta, R. A. Minns, C. P. Petersen, Macromolecules, 28, 386 (1995).
  237. [9] C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 101, 3661 (2001).
  238. [19] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature, 365, 628 (1993).
  239. [20] A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater., 16, 4556 (2004).
  240. [21] S. Son, A. Dodabalapur, A. J. Lovinger, M. E. Galvin, Science, 269, 376 (1995).
  241. [22] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, 36, 6577 (2003).
  242. [29] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, S. H. Thang, Polym. Int., 49, 993 (2000).
  243. [30] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta. Polym., 50, 105 (1999).
  244. [35] S. Kang, Y. Saito, N. Watanabe, M. Tokita, Y. Takanishi, H. Takezoe, J. Watanabe, J. Phys. Chem. B, 110, 5205 (2006).
  245. [36] C. Weder, M. S. Wrighton, R. Spreiter, C. Bosshard, P. Gunter, J. Phys. Chem., 100, 18931 (1996).
  246. [40] MNDO semi-empirical calculations and molecular orbitals were performed with Gaussian R 98W and Gauss View 3.09 by Gaussian, Inc.
  247. [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackey, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 347, 539 (1990).
  248. [3] S.-H. Jin, M.-Y. Kim, J. Y. Kim, K. Lee, Y.-S. Gal, J. Am. Chem. Soc., 126, 2474 (2004).
  249. [4] R. Traiphol, P. Sanguansat, T. Srikhirin, T. Kerdcharoen, T. Osotchan, Macromolecules, 39, 1165 (2006).
  250. [7] N. C. Greenham, S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature, 365, 628 (1993).
  251. [9] Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature, 397, 414 (1999).
  252. [11] B. R. Hsieh, Y. Yu, A. C. Vanlaeken, H. Lee, Macromolecules, 30, 8094 (1997).
  253. [13] Y. J. Shi, J. Liu, Y. Yang, J. Appl. Phys., 87, 4254 (2000).
  254. [15] Y. Zhang, J. Peng, Y. Mo, Y. Cao, Appl. Phys. Lett., 85, 5170 (2004).
  255. [16] Y.-Z. Lee, X. Chen, S.-A. Chen, P.-K. Wei, W.-S. Fann, J. Am. Chem. Soc., 123, 2296 (2001).
  256. [17] H.-J. Su, F.-I. Wu, Y.-H. Tseng, C.-F. Shu, Adv. Funct. Mater., 15, 1209 (2005).
  257. [1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998).
  258. [2] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750 (2000).
  259. [3] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuli, F. Sato, Appl. Phys. Lett., 83, 569 (2003).
  260. [4] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
  261. [5] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 86, 071104 (2005).
  262. [8] K. M. Vaeth, C. W. Tang, J. Appl. Phys., 92, 3447 (2002).
  263. [9] X. Yang, D. Neher, D. Hertel, T. K. Däubler, Adv. Mater., 16, 161 (2004).
  264. [10] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu, A. K.-Y. Jen, Adv. Mater., 15, 45 (2003).
  265. [11] X. Gong, S.-H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen, G. C. Bazan, J. Appl. Phys., 95, 948 (2004).
  266. [13] J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y.-T. Tao, C.-H. Chien, A. J. Carty, Adv. Funct. Mater., 15, 223 (2005).
  267. [14] Y.-L. Tung, S.-W Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater., 17, 1059 (2005).
  268. [16] J.-H. Jou, M.-C. Sun, H.-H. Chou, C.-H. Li, Appl. Phys. Lett., 88, 141101 (2006).
  269. [17] X. W. Chen, J. L. Liao, Y. M. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc., 125, 636 (2003).
  270. [20] G. L. Schulz, X. Chen, S.-A. Chen, S. Holdcroft, Macromolecules, 39, 9157 (2006).
  271. [21] A. J. Sandee, C. K. Willianms, N. R. Evans, J. E. Davies, C. E. Boothby, A. Köhler, R. H. Friend, A. B. Holmes, J. Am. Chem. Soc., 126, 7041 (2004).
  272. [23] Y.-Y. Noh, C.-L. Lee, J.-J. Kim, K. Yase, J. Chem. Phys., 118, 2853 (2003).
  273. [24] T.-H. Kim, D.-H. Yoo, J. H. Park, O. O. Park, J.-W. Yu, J. K. Kim, Appl. Phys. Lett., 86, 171108 (2005).
  274. [25] J. Bisberg, W. J. Cumming, R. A. Gaudiana, K. D. Hutchinson, R. T. Ingwall, E. S. Kolb, P. G. Mehta, R. A. Minns, C. P. Petersen, Macromolecules, 28, 386 (1995).
  275. [35] G. Moad, J. Chiefari, Y. K. Chong, J. Krstina, R. T. A. Mayadunne, A. Postma, E. Rizzardo, S. H. Thang, Polym. Int., 49, 993 (2000).
  276. [36] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta. Polym., 50, 105 (1999).
  277. [38] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
  278. [39] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).
  279. [1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998).
  280. [2] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750 (2000).
  281. [3] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuli, F. Sato, Appl. Phys. Lett., 83, 569 (2003).
  282. [4] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
  283. [5] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 86, 071104 (2005).
  284. [8] K. M. Vaeth, C. W. Tang, J. Appl. Phys., 92, 3447 (2002).
  285. [9] X. Yang, D. Neher, D. Hertel, T. K. Däubler, Adv. Mater., 16, 161 (2004).
  286. [10] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu, A. K.-Y. Jen, Adv. Mater., 15, 45 (2003).
  287. [11] X. Gong, S.-H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen, G. C. Bazan, J. Appl. Phys., 95, 948 (2004).
  288. [13] J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y.-T. Tao, C.-H. Chien, A. J. Carty, Adv. Funct. Mater., 15, 223 (2005).
  289. [14] Y.-L. Tung, S.-W Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater., 17, 1059 (2005).
  290. [15] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, M. E. Thompson, J. Am. Chem. Soc., 125, 7796 (2003).
  291. [17] Y. Cao, I. D. Parker, G. Yu, C. Zhang, A. J. Heeger, Nature, 397, 414 (1999).
  292. [19] Y.-Y. Noh, C.-L. Lee, J.-J. Kim, K. Yase, J. Chem. Phys., 118, 2853 (2003).
  293. [20] T. H. Kim, D. H. Yoo, J. H. Park, O. O. Park, J. W. Yu, J. K. Kim, Appl. Phys. Lett., 86, 171108 (2005).
  294. [21] X. W. Chen, J. L. Liao, Y. M. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc., 125, 636 (2003).
  295. [23] Y. You, S. H. Kim, H. K. Jung, S. Y. Park, Macromolecules, 39, 349 (2006).
  296. [24] G. L. Schulz, X. Chen, S.-A. Chen, S. Holdcroft, Macromolecules, 39, 9157 (2006).
  297. [25] A. J. Sandee, C. K. Willianms, N. R. Evans, J. E. Davies, C. E. Boothby, A. Köhler, R. H. Friend, A. B. Holmes, J. Am. Chem. Soc., 126, 7041 (2004).
  298. [30] C. Weder, M. S. Wrighton, R. Spreiter, C. Bosshard, P. Gunter, J. Phys. Chem., 100, 18931 (1996).
  299. [33] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
  300. [34] X. Zhang, Z. Chen, C. Yang, Z. Li, K. Zhang, H. Yao, J. Qin, J. Chen, Y. Cao, Chem. Phys. Lett., 422, 386 (2006).
  301. [35] Y.-H. Niu, B. Chen, S. Liu, H. Yip, J. Bardecker, A. K.-Y. Jen, Appl. Phys. Lett., 85, 1619 (2004).
  302. [1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature, 395, 151 (1998).
  303. [2] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature, 403, 750 (2000).
  304. [3] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuli, F. Sato, Appl. Phys. Lett., 83, 569 (2003).
  305. [4] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
  306. [5] Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, C. Adachi, Appl. Phys. Lett., 86, 071104 (2005).
  307. [8] K. M. Vaeth, C. W. Tang, J. Appl. Phys., 92, 3447 (2002).
  308. [9] X. Yang, D. Neher, D. Hertel, T. K. Däubler, Adv. Mater., 16, 161 (2004).
  309. [10] X. Gong, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, M. S. Liu, A. K.-Y. Jen, Adv. Mater., 15, 45 (2003).
  310. [11] X. Gong, S.-H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen, G. C. Bazan, J. Appl. Phys., 95, 948 (2004).
  311. [13] J. Kavitha, S.-Y. Chang, Y. Chi, J.-K. Yu, Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Y.-T. Tao, C.-H. Chien, A. J. Carty, Adv. Funct. Mater., 15, 223 (2005).
  312. [14] Y.-L. Tung, S.-W Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater., 17, 1059 (2005).
  313. [16] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 79, 2082 (2001).
  314. [17] X. W. Chen, J. L. Liao, Y. M. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc., 125, 636 (2003).
  315. [20] G. L. Schulz, X. Chen, S.-A. Chen, S. Holdcroft, Macromolecules, 39, 9157 (2006).
  316. [21] A. J. Sandee, C. K. Willianms, N. R. Evans, J. E. Davies, C. E. Boothby, A. Köhler, R. H. Friend, A. B. Holmes, J. Am. Chem. Soc., 126, 7041 (2004).
  317. [23] Y.-Y. Noh, C.-L. Lee, J.-J. Kim, K. Yase, J. Chem. Phys., 118, 2853 (2003).
  318. [24] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, K. Imai, Appl. Phys. Lett., 65, 807 (1994).
  319. [26] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett., 79, 156 (2001).
  320. [27] Y. Kuwabara, H. Ogawa, Y. Shirota, Adv. Mater., 6, 677 (1994).
  321. [28] W. J. Feast, R. J. Peace, I. C. Sage, E. L. Wood, Polym. Bull., 42, 167 (1999).
  322. [29] Y. Liu, M. S. Liu, A. K.-Y. Jen, Acta. Polym., 50, 105 (1999).
  323. [31] J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, P. D. Marco, Appl. Phys. Lett., 76, 2352 (2000).
  324. [32] S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, J. Am. Chem. Soc., 123, 4304 (2001).
  325. [33] Q.-D. Liu, J. Lu, J. Ding, M. Day, Y. Tao, P. Barrios, J. Stupak, K. Chan, J. Li, Y. Chi, Adv. Funct. Mater., 17, 1028 (2007).
  326. [34] Y. Kawamura, S. Yanagida, S. R. Forrest, J. Appl. Phys., 92, 87 (2002).
  327. [35] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).