Title

利用逆微胞自組裝技術製備銀奈米線

Translated Titles

Fabrication of Silver Nanowires Using Self-Assembled Reverse Micelle Template at Controlled Low Temperature

Authors

蔡瀞儀

Key Words

自組裝 ; 銀奈米線 ; 逆微胞 ; reverse micelle ; silver nanowire ; self-assembly

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2008年

Academic Degree Category

碩士

Advisor

劉瑞祥

Content Language

英文

Chinese Abstract

本研究利用兩性分子結合逆微胞技術製備銀奈米線。所使用的兩性分子包含小分子界面活性劑和兩性嵌段共聚合物。在小分子界面活性劑部分,以逆微胞技術製備銀奈米粒子,並藉由逆微胞外圍界面活性劑長碳鏈段間的凡得瓦力作用,在適當條件下可自組裝成銀奈米管,由於奈米級銀粒子具有低熔點之特性,故自組裝的銀奈米管可於低溫下燒結得到銀奈米線。以octanoic acid 和甲基丙烯酸甲酯作為界面活性劑及有機相,硝酸銀和硼氫化鈉為銀奈米粒子的前驅物和還原劑,藉由改變水和界面活性劑的莫耳比 (w)、硝酸銀水溶液的濃度及不同的有機相,探討不同變因對銀奈米粒子自組裝行為的影響。 研究中兩嵌段共聚物以原子轉移自由基聚合法成功合成。由於兩性嵌段共聚物兩鏈段親疏水性質之差異,亦可藉由逆微胞技術製備分散良好的銀奈米粒子。研究中更進一步以多孔性氧化鋁 (AAO) 為模板,在不同的燒結加工操作條件下,製備不同長度的銀奈米線。燒結加工過程可分為兩種不同製程,若將銀奈米粒子填充入AAO模板中,直接燒結後移除模板,可製備較短的銀奈米線。若將銀奈米粒子、甲基丙烯酸甲酯及光起始劑填充入AAO模板,照UV光聚合固定銀奈米粒子,形成聚合物-奈米銀複合材料,經燒結後可製備出較長的銀奈米線。

English Abstract

Silver nanowires were fabricated by surfactant and diblock copolymer via a reverse micelle technique. In case of low molecular weight surfactant, silver nanoparticles self-assembled into nanotubes under proper conditions due to the secondary forces such as Van der Waals force and polar-polar interactions between reverse micelles. The melting point of the fabricated silver nanoparticles was found to be reduced to 115 oC. Silver nanotubes were sintered into nanowires at a controlled low temperature. In a low molecular weight surfactant system, methyl methacrylate (MMA) and octanoic acid were used as organic phase and surfactant, respectively. Effects of surfactant concentration, nanoparticle amount, and organic phases on the formation of self-assembly were studied. Furthermore, in order to investigate the possibility of the fabrication of silver nanowires using polymer surfactant, a diblock copolymer was synthesized through an ATRP polymerization. Silver nanoparticles were prepared using the diblock copolymer as a surfactant. The fabricated silver nanoparticles were mixed with MMA and photoinitiator, and then filled into pores of the anodic aluminium oxide membrane (AAO). After UV irradiation and the removal of AAO template, silver nanoparticle embedded polymer fibers were fabricated. Sintering the cured AAO film at 500 oC produced long length silver nanowires. Additionally, sintering of silver nanoparticles filled in AAO template produced short silver nanowires. This investigation demonstrates the fabrication of silver nanowires of a controlled length at a controlled low temperature.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. [1] Poole, C. P.; Owens, F. J. Introduction to Nanotechnology, Wiley: Hoboken, 2003.
    連結:
  2. [2] (a) Wu, Y.; Xiang, J.; Yang, C.; Lu, W.; Lieber, C. M. Nature 2004, 430, 704. (b) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. (c) Tao, A. R.; Yang, P. J. Phys. Chem. B 2005, 109, 15687.
    連結:
  3. [5] Wolfson, H.; Elliott, G. Electrically Conducting Cements Containing Epoxy Resins and Silver. U.S. Patent 2, 774, 747, 1956.
    連結:
  4. [8] Huck, Wilhelm T. S. Nanoscale Assembly: Chemical Techniques, Springer-Verlag: New York, 2005.
    連結:
  5. [9] Wang, D.; Möhwald, H. J. Mater. Chem. 2004, 14, 459.
    連結:
  6. [10] Robinson, B. H. Self-Assembly, IOS Press; Amsterdam, 2003
    連結:
  7. [13] Abetz, V. Block Copolymers, Springer-Verlag; Berlin, 2005.
    連結:
  8. [15] Szwarc, M. Carbanions, Living Polymers and Electron-Transfer Process, Wiley-Interscience; New York, 1968.
    連結:
  9. [17] Ivin, K. J.; Mol, G. S. Olefin Metathesis and Metathesis Polymerization, Academic Press; London, 1996.
    連結:
  10. [18] Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101, 2921.
    連結:
  11. [19] Matyjaszewski, K.; Tsarevsky, N. V. Chem. Rev. 2007, 107, 2270.
    連結:
  12. [25] Zhang, Z. Q.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E.; Aikens, P. A. J. Phys. Chem. B 2000, 104, 1176.
    連結:
  13. [30] Lisiecki, I.; Pileni, M. P. Langmuir 2003, 19, 9486.
    連結:
  14. [32](a) Liveri, V. T. Controlled Synthesis of Nanoparticles in Microheterogeneous Systems, Springer; New York, 2006. (b) Liz-Marzán L. M.; Kamat, P. V. Nanoscale Materials, Kluwer Academic Publishers; Boston, 2003.
    連結:
  15. [38] Liz-Marzán, L. M.; Lado-Tourino, I. Langmuir 1996, 12, 3585.
    連結:
  16. [40] Zhang, Z.; Patel, R. C.; Kothari, R.; Johnson, C. P.; Friberg, S. E. J. Phys. Chem. B 2000, 104, 1176.
    連結:
  17. [42] Alexandridis, P.; Olsson, U.; Lindman, B. Langmuir 1998, 14, 2627.
    連結:
  18. [45] Yin, D.; Horiuchi, S. Chem. Mater. 2005, 17, 463.
    連結:
  19. [46] Koh, H. D.; Kang, N. G.; Lee, J. S. Langmuir 2007, 23, 11425.
    連結:
  20. [51] Tan, Y.; Jiang, L.; Li, Y.; Zhu, D. J. Phys. Chem. B 2002, 106, 3131.
    連結:
  21. [52] Yu, D.; Yam, V. W. W. J. Phys. Chem. B 2005, 109, 5497.
    連結:
  22. [54] Korgel, B. A.; Fitzmaurice, D. Adv. Mater. 1998, 10, 661.
    連結:
  23. [56] Yang, N.; Aoki, K.; Nagasawa, H. J. Phys. Chem. B 2004, 108, 15027.
    連結:
  24. [57] Malandrino, G.; Finocchiaro, S. T.; Fragalà I. L. J. Mater. Chem. 2004, 14, 2726.
    連結:
  25. [58] Zhang, S. H.; Xie, Z. X.; Jiang, Z. Y.; Xu, X.; Xiang, J.; Huang, R. B.; Zheng, L. S. Chem. Commun. 2004, 1106.
    連結:
  26. [64] Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Chem. Mater. 2001, 13, 275.
    連結:
  27. [65] Hong, B. H.; Bae, S. C.; Lee, C. W.; Jeong, S.; Kim, K. S. Science 2001, 294, 348.
    連結:
  28. [66] Duan, X.; Lieber, C. M. Adv. Mater. 2000, 12, 298.
    連結:
  29. [67] Zhou, Y.; Yu, S. H.; Cui, X. P.; Wang, C. Y.; Chen, Z. Y. Chem. Mater. 1999, 11, 545.
    連結:
  30. [69] Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 14, 80.
    連結:
  31. [71] Gou, L.; Chipara, M.; Zaleski, J. M. Chem. Mater. 2007, 19, 1755.
    連結:
  32. [72] Nicolais, L.; Carotenuto, G. Metal-Polymer Nanocomposites, Wiley-Interscience; Hoboken, 2005.
    連結:
  33. [75] Kong, H.; Jang, J. Chem. Commun. 2006, 3010.
    連結:
  34. [77] Creighton, J. A. Surf. Sci. 1983, 124, 209.
    連結:
  35. [78] Moskovits, M.; Suh, J. S. J. Am. Chem. Soc. 1985, 107, 6826.
    連結:
  36. [3] (a) Zhang, Z.; Sun, X.; Dresselhaus, M. S.; Ying, J. Y. Phys. Rev. B 2000, 61, 4850. (b) Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.
  37. [4] (a) Hu, X.; Chan, C. T. Appl. Phys. Lett. 2004, 85, 1520. (b) Chimentao, R. J.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. E. Chem. Commun. 2004, 846.
  38. [6] (a) Li, Y.; Moon, K.; Wong, C. P. Science 2005, 308, 1419. (b) Kim, J. M.; Yasuda, K.; Fujimoto, K. J. Electron. Mater. 2005, 34, 600.
  39. [7] (a) Whiteside, G. M.; Grzybowski, B. Science 2002, 295, 2418. (b) Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505.
  40. [11] Zhang, J. Z. Self-Assembled Nanostructures, Kluwer Academic/Plenum Publishers; New York, 2003.
  41. [12] Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.
  42. [14] Chiu, J. J.; Kim, B. J.; Kramer, E. J.; Pine, D. J. J. Am. Chem. Soc. 2005, 127, 5036.
  43. [16] Matyjaszewski, K. Cationic Polymerizations: Mechanisms, Synthesis and Applications, New York; Marcle Dekker, 1996.
  44. [20] (a) Matyjaszewski, K.; Wang, J. L.; Grimaud, T. Macromolecules 1997, 30, 6507. (b) Matyjaszewski, K.; Shipp, D. A.; Wang, J. L. Macromolecules 1998, 31, 8005.
  45. [21] (a) Ito, H.; Ueda, M. Macromolecules, 1988, 21, 1475. (b) Ramireddy, C.; Tuzar, Z.; ProchBzka, K.; Webber, S. E.; Munk, P. Macromolecules, 1992, 25, 2541.
  46. [22] Zhang, X.; Xia, J.; Matyjaszewski, K. Poly. Prepr. (Am. Chem.Soc., Div. Polym. Chem.) 1999, 40, 440.
  47. [23] Haddleton, D. M.; Crossman, M. C.; Dana, B. H.; Duncalf, D. J.; Heming, A. M.; Kukulji, D.; Shooter, A. J. Macromolecules 1999, 32, 2110.
  48. [24] Karanam, S.; Goossens, H.; Klumperman, B.; Lemstra, P. Macromolecules 2003, 36, 3051.
  49. [26] Xue, B.; Chen, P.; Hong, O.; Lin, J. Y.; Tan, K. L. J. Mater. Chem. 2001, 11, 2378.
  50. [27] Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Langmuir 2001, 17, 6000.
  51. [28] Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Khan, M. I.; Kumar, R.; Sastry, M. Colloids Surf. B 2003, 28, 313.
  52. [29] Andersson, M.; Alfredsson, V.; Kjellin, P.; Palmqvist, A. Nano Lett. 2002, 2, 1403.
  53. [31] Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950.
  54. [33] Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Chem. Rev. 2004, 104, 3893.
  55. [34] (a) Zoltan, A. S. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2002, 305. (b) Zhijun, H.; Alain, M. J.; Sunil, K. V.; Jean-Francüois, G. J. Am. Chem. Soc. 2005, 127, 6526. (c) Shen, H.; Eisenberg, A. Macromolecules 2000, 33, 2561.
  56. [35] (a) Petit, C.; Lixon, P.; Pileni, M. P. J. Phys. Chem. B 1993, 97, 12974. (b) Taleb, A.; Petit, C.; Pileni, M. P. Chem. Mater. 1997, 9, 950.
  57. [36] Wang, W.; Efrima, S.; Regev, O. Langmuir 1998, 14, 602.
  58. [37] Bright, R. B.; Musick, M. D.; Natan, M. J. Langmuir 1998, 14, 5695.
  59. [39] (a) Barnickel, P.; Wokaun, A. Mol. Phys. 1990, 69, 1. (b) Barnickel, P.; Wokaun, A.; Sager, W.; Eicke, H. F. J. Colloid Interface Sci. 1992, 148, 80.
  60. [41] Andersson, M.; Pedersen, J. S.; Palmqvist, E. C. Langmuir 2005, 21, 11387.
  61. [43] Sohn, B. H.; Yoo, S. I.; Seo, B. W.; Yun, S. H.; Park, S. M. J. Am. Chem. Soc. 2001, 123, 12734.
  62. [44] Sohn, B. H.; Choi, J. M.; Yoo, S. I.; Yun, S. H.; Zin, W. C.; Jung, J. C.; Kanehara, M.; Hirata, T.; Teranishi, T. J. Am. Chem. Soc. 2003, 125, 6368.
  63. [47] Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. 1996, 100, 13904.
  64. [48] Han, L.; Luo, J.; Kariuki, N. N.; Maye, M. M.; Jones, V. W.; Zhong, C. J. Chem. Mater. 2003, 15, 29.
  65. [49] Xu, S.; Zhou, H.; Xu, J.; Li, Y. Langmuir 2002, 18, 10503.
  66. [50] Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237.
  67. [53] Zhang, J.; Han, B.; Liu, M.; Liu, D.; Dong, Z.; Liu, J.; Li, D. J. Phys. Chem. B 2003, 107, 3679.
  68. [55] Jiang, H.; Moon, K. S.; Li, Y.; Wong, C. P. Chem. Mater. 2006, 18, 2969.
  69. [59] Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater. 2000, 12, 2068.
  70. [60] Besson, S.; Gacoin, T.; Ricolleau, C.; Boilot, J. P. Chem. Commun. 2003, 360.
  71. [61] Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775.
  72. [62] (a) Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617. (b) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.
  73. [63] Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
  74. [68] Maddanimath, T.; Kumar, A.; D’Arcy-Gall, J.; Ganesan, P. G.; Vijayamohananb, K.; Ramanath, G. Chem. Commun. 2005, 1435.
  75. [70] Liu, S.; Yue, J.; Gedanken, A. Adv. Mater. 2001, 13, 656.
  76. [73] Wang, X.; Naka, K.; Itoh, H.; Park, S.; Chujo, Y. Chem. Commun. 2002, 1300.
  77. [74] Drury, A.; Chaure, S.; Kröll, M.; Nicolosi, V.; Chaure, N.; Blau, W. J. Chem. Mater. 2007, 19, 4252.
  78. [76] Sandroff, C. J.; Garoff, S.; Leung, K. P. Phys. Lett. 1983, 22, 547.
  79. [79] Xue, L.; Agarwal, U. S.; Lemstra, P. J. Macromolecules 2002, 35, 8650.
  80. [80] (a) Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N. Nano Lett. 2002, 2, 165. (b) Sun, Y. G.; Xia, Y. N. Adv. Mater. 2002, 14, 833.
  81. [81] Jensen, T.; Kelly, L.; Lazarides, A.; Schatz, G. C. Journal of Cluster Science 1999, 10, 295.
  82. [82] Ohe, C.; Ando, H.; Sato, N.; Urai, Y.; Yamamoto, M.; Itoh, K. J. Phys. Chem. B 1999, 103, 435.
  83. [83] (a) Ito, H.; Ueda, M. Macromolecules 1988, 21, 1475. (b) Östmark, E.; Harrisson, S.; Wooley, K. L.; Malmström, E. E. Biomacromolecules 2007, 8, 1138.