Title

海膽狀碳材用於直接甲醇燃料電池之放電性能探討

Translated Titles

Study on the Performance of Direct Methanol Fuel Cell with Sea Urchin-like Carbon Support.

Authors

陳美合

Key Words

直接甲醇燃料電池 ; 合金觸媒擔載量 ; 海膽狀碳材 ; 中孔洞碳材 ; 碳擔體 ; mesoporous carbon ; carbon support ; amount of catalyst loading ; direct methanol fuel cell ; urchin like carbon.

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

楊明長

Content Language

繁體中文

Chinese Abstract

燃料電池為可將化學能轉換為電能的裝置,由於具低污染等優點,相當有未來的發展性。直接甲醇燃料電池為直接將進料甲醇燃料氧化產生電能,其中膜電極中提供反應的電極觸媒常為擔載在擔體上的白金-釕合金觸媒,合金觸媒活性與碳擔體型態為電池效能的關鍵因素。本研究在中孔碳擔體HMC上生長奈米碳管,製備成海膽狀碳擔體(HMC-CNT),利用三極式系統探討碳管生長條件、合金金屬觸媒擔載量與膜電極組製備條件對電池放電性能的影響。 由SEM觀察到增加生長碳管持溫時間與溫度使碳管型態變長與增多,以各種奈米碳管成長條件所得海膽狀碳擔體應用在半電池作循環伏安測試時,HMC-CNT (90, 800),具最高活性,峰電流密度為0.0531 mA/cm2。而在單電池中,HMC-CNT (60, 800)可得最佳效能,功率密度可達21.1 mW/cm2,較HMC高了40%,而較ETEK 商業觸媒高了17%。 比較HMC與HMC-CNT (60, 800)兩種碳擔體,在熱壓壓力20 kg/cm2下可得最大功率密度,分別為15.0 mW/cm2與21.1 mW/cm2,海膽狀碳材比中孔碳材高40%;電池操作溫度90C可得最大功率密度分別為16.2 mW/cm2與23.2 mW/cm2,海膽狀碳材比中孔碳材高43%。 比較XC72、HMC與HMC-CNT (60, 800),陰陽極白金塗佈量分別固定為0.6 mg Pt/cm2與1.2 mg Pt/cm2,在不同碳塗佈量時,54 wt%合金觸媒含量比27 wt%,所得最大功率密度分別增加了30%、18%與5%;與陰陽極碳黑塗佈量固定為2.4 mg C/cm2與4.8 mg C/cm2,在不同白金塗佈量時,54 wt%合金觸媒含量比27 wt%,所得最大功率密度分別增加了50%、26%與19%。

English Abstract

Direct methanol fuel cell (DMFC) was a type of power generating system that can directly transfer chemical energy to electrical energy. Considering environmental protection and energy efficiency, DMFC have great a potential in developing new type power generating system. In a DMFC system, alloy catalysts on loaded on carbon supports to prepare membrane electrode assembly (MEA). The carbon support and catalyst become two key points of the cell performance. This report used urchin-like carbon support (HMC-CNT) which was fabricated by growing carbon nano-tubes on mesoporous carbon support (HMC). The effect of the amount of alloy catalyst on carbon support, nanotube growth condition, and MEA preparation condition were investigated. A three-electrode system was applied to analyze cell performance. According to SEM pictures, higher growing temperature and longer time produce longer and denser carbon nanotube. Urchin-like carbon HMC-CNT(90,800), whose nanotube was grown at 800°C for 90 min, had the highest activity with a peak current density of 0.0531 mA/cm2 in cyclic voltammetric tests. The highest maximum power density of DMFC was 21.1 mW/cm2 with the best urchin-like carbon HMC-CNT(60,800). This power density was 40% higher than that without carbon nanotube and 17% higher than that with commercial ETEK. For MEA with carbon supports of HMC and HMC-CNT(60, 800), hot pressure of 20 kg/cm2 gave the highest maximum power density, 15.0 mW/cm2 and 21.1 mW/cm2, respectively. HMC-CNT has higher maximum power density than HMC by 40%; cell operation temperature of 90°C gave the highest maximum power density, 16.2 mW/cm2 and 23.2 mW/cm2 for HMC and HMC-CNT(60, 800). HMC-CNT has higher maximum power density than HMC by 43%. Based on the same platinum loading (0.6 mg Pt/cm2 for cathode and 1.2 mg Pt/cm2 for anode) but various carbon loading on MEAs, alloy content of 54 wt% in catalyst had higher maximum power density than that of 27 wt% by 30, 18, and 5% for with carbon supports of XC72, HMC and HMC-CNT(60-800). Similarly, based on the same carbon loading (2.4 mg C/cm2 for cathode and 4.8 mg C/cm2 for anode) but various platinum loading on MEAs, alloy content of 54 wt% in catalyst had higher maximum power density than that of 27 wt% by 50, 26, and 19% for with carbon supports of XC72, HMC and HMC-CNT(60-800).

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. 1. J. Larminie, A. Disk, “Fuel Cell system Explained”, John Wiley &Son, p.1 (2001).
    連結:
  2. 3. J. Larminie, A. Disk, “Fuel Cell system Explained”, John Wiley &Son, p.23 (2001).
    連結:
  3. 4. K. Scott, W. M. Taama, P. Argyropoulos, “Engineering Aspects of the Direct Methanol Fuel Cell System”, J. Power Sources, Vol. 79, pp. 43-59 (1999).
    連結:
  4. 5. A. Biyikoglu, “Review of Proton Exchange Membrane Fuel Cell Models”, Int. J. Hydrogen Energy, Vol. 30, pp. 1181-1212 (1998).
    連結:
  5. 6. U. B. Demirci, “Direct liquid-feed fuel cells: thermodynamic and environmental concerns”, J. Power sources, Vol. 169, pp. 239-246 (2007).
    連結:
  6. 11. H. Dohle, J. Divisek, R. Jung, “Process engineering of the Direct Methanol Fuel Cell”, J. Power Sources, Vol. 86, pp. 469-477 (2002).
    連結:
  7. 12. T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, “Polymer electrolyte fuel cell model”, J. Electrohem. Soc., Vol. 138, pp. 2334-2342 (1989).
    連結:
  8. 13. R. Jiang, D. Chu, “Comparative Studies of Methanol Crossover and Cell Performance for a DMFC”, J. Electrochem. Soc., pp. A69-A76 (2004).
    連結:
  9. 14. S. Eccarius, B. L. Garcia, C. Hebling, J. W. Weudner, “Experimental Validation of a Methanol Crossover Model in DMFC applications”, J. Power Sources, Vol. 179, pp. 723-733 (2008)
    連結:
  10. 15. S. Hikita, K. Yamane, Y. Makajima, “Measurement of Methanol Crossover in Direct Methanol Fuel Cell”, JSAE Review, Vol. 22, pp. 151-156 (2001).
    連結:
  11. 17. H. Huang, P. K. Dasgupta, Z. Genfa, J. Wang, “A Pulse Amperometric Sensor for the Measurement of Atmospheric Hydrogen Peroxide”, Anal. Chem., Vol. 68, pp. 2062-2066 (1996).
    連結:
  12. 18. J. S. Do., R. Y. Shieh, “Electrochemical Nitrogen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte”, Sensors and Actuators, Vol.37, pp. 19-26 (1996).
    連結:
  13. 19. L. J. Hobson, H. Ozu, M. Yamaguchi, “Modified Nafion 117 as an Improved Polymer Electrolyte Membrane for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 148, pp. 1185-1190 (2001).
    連結:
  14. 20. W. H. Lizcano-Valbuena, V. A. Paganin, C. A. P. Leite, F. Galembeck, E. R. Gonzalez, “Catalysts for DMFC : Relation between Morphology and Electrochemical Performance”, Electrochim. Acta, Vol. 48, pp. 3869-3878 (2003).
    連結:
  15. 21. M. S. Loffler, H. Natter, R. Hempelmann, K. Wippermann, “Preparation and Characterisation of Pt-Ru Model Electrodes for the Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 3047-3051 (2003).
    連結:
  16. 22. J. H. Choi, K. W. Park, H. K. Lee, Y. M. Kim, J. S. Lee, Y. E.un Sung, “Nano-composite of PtRu Alloy Electrocatalyst and Electronically Conducting Polymer for use as the Anode in A Direct Methanol Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 2781-2789 (2003).
    連結:
  17. 23. W. H. Lizcano-Valbuena, V. A. Paganin, E. R. onzalez, “Methanol Electro-Oxidation on Gas Diffusion Electrodes Repared with Pt/Ru/C Catalysts”, Electrochim. Acta, Vol. 47, pp. 3715-3722 (2002).
    連結:
  18. 24. I. Honmaz, T. Toda, “Temperature Dependence of Kinetics of Methanol Electro-oxidation on PtSn Alloys”, J. Electrochem. Soc., Vol.150, pp. 1689-1692 (2003).
    連結:
  19. 25. J. H. Choi, K. W. Park, B. K. Kwon, Y. E. Sung, “Methanol Oxidation on Pt/Ru, Pt/Ni, and Pt/Ru/Ni Anode Electrocatalysts at Different Temperatures for DMFCs”, J. Electrochem. Soc., Vol. 150, pp. 973-978 (2003).
    連結:
  20. 26. B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, “Structural and Electrochemical Characterization of Binary, Ternary, and Quaternary Platinum Alloy Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, Vol. 102, pp. 9997-10003 (1998).
    連結:
  21. 27. S. D. Lin, T. C. Hsiao, “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem., Vol. 103, pp. 97-103 (1999).
    連結:
  22. 28. T. E. Shubina, M. T. M. Koper, “Quantum-chemical calculations of CO and OH interacting with Bimetallic Surfaces”, Electrochim. Acta, Vol. 47, pp. 3621-3628 (2002).
    連結:
  23. 29. M. S. Liao, C. R. Cabrera, Y. Ishikawa, “A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M (M = Ru, Sn, Ge) Clusters”, Surf. Sci., Vol. 445, pp. 267-282 (2000).
    連結:
  24. 30. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon supported Pt–Co Alloys as Methanol-resistant Oxygen Reduction Electrocatalysts for Direct Methanol Fuel Cells”, Applied Catalysis B: Environmental, Vol. 57, pp. 283-290 (2005).
    連結:
  25. 31. E. Antolini, J. R. C. Salgado, A. M. dos Santos, E. R. Gonzalez, “Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Method as Electrocatalysts for DMFCs”, Electrochem and Solid-State Letters, Vol. 8, pp. 226-230 (2005).
    連結:
  26. 32. W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G.Q. Suna, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras, “Performance Comparison of Low-temperature Direct Alcohol Fuel Cells with different Anode Catalysts”, J. Power Sources, Vol. 126, pp. 16-22 (2004).
    連結:
  27. 33. J. H. Choi, K. W. Park, I. S. Park, W. H. Nam, Y. E. Sung, “Methanol Electro-oxidation and Direct Methanol Fuel Cell using Pt/Rh and Pt/Ru/Rh Alloy Catalysts”, Electrochim. Acta, Vol. 50, pp. 787-790 (2004).
    連結:
  28. 34. E. Ribadeneira, B. A. Hoyos, “Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells”, J. Power Sources, Vol. 180, pp. 238-242 (2008).
    連結:
  29. 35. K. W. Park, J. H. choi, S. A. Lee, C. Pak, H. Chang, Y. E. Sung, “PtRuRhNi nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuel cell”, J. Catalysis, Vol. 224, pp. 236-242 (2004).
    連結:
  30. 36. J. Shim, D. Y. Yoo and J. S. Lee, “Characteristics for electrocatalytic properties and hydrogen–oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell”, Electrochim. Acta, Vol 45, pp. 1943-1951 (2000).
    連結:
  31. 37. S. K. Wang, F. Tseng, T. K. Yeh, C. C. Chieng, “Electrocatalystic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC”, J. Power Sources, Vol. 167, pp. 413-419 (2007).
    連結:
  32. 38. K. T. Jeng, C. C. Chien, N. Y. Hsu, S. C. Yen, S. D. Chiou, S. H. Lin and W. M. Huang, “Performance of direct methanol fuel cell using carbon nanotube-supported Pt–Ru anode catalyst with controlled composition”, J. Power Sources, Vol. 160, pp. 97-104 (2006).
    連結:
  33. 39. H. Yamada, T. Hirai, I. Moriguchi, T. Kudo, “A highly active Pt catalyst fabricated on 3D porous carbon”, J. Power Sources, Vol. 164, pp. 538-543 (2007).
    連結:
  34. 40. K. Han, J. Lee, H. Kim, “Preparation and characterization of high metal content Pt-Ru alloy catalysts on various carbon blacks for DMFCs”, Electrochimica Acta, Vol. 52, pp. 1697-1702 (2006).
    連結:
  35. 41. C. M. Chuang, S. P. Sharma, J. M. Ting, H. P. Lin, H. Teng, C. W. Huang, “Preparation of sea urchin-like carbons by growing one-dimensional nanocarbon on mesoporous carbons”, Diamond Relat. Mater., Vol. 17, pp. 606-610 (2008).
    連結:
  36. 42. K. Scott, W. M. Taama, P. Argyropoulos, “Material aspects of the liquid feed direct methanol fuel cell”, J. Applied Electrochemistry, Vol. 28, pp. 1389-1397 (1998).
    連結:
  37. 46. T. Freelink, W. Visscher, J. A. R.n Veen, “On the role of Ru and Sn as Promotors of Methanol Electro-oxidation over Pt”, Surf. Sci., Vol.335, pp. 353-360 (1995).
    連結:
  38. 47. J. H. Choi, K.W. Park, B. K. Kwon, Y. E. Sung, “Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh, Pt/Ru/Rh alloy catalysts”, Electrochemica Acta., Vol. 50, pp. 787-790 (2003).
    連結:
  39. 48. Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa, “Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode”, J. Am. Chem. Soc., Vol. 125, pp. 3680-3681 (2003)
    連結:
  40. 50. 賴韋翔,“碳擔體形態及表面處理對直接甲醇燃料電池性能之影響”,國立成功大學化學工程系碩士論文 (2008)。
    連結:
  41. 51. A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, John Wiley & Son, p. 100 (2001).
    連結:
  42. 52. M. D. Bernardi, W. V. Mark, “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp. 2477-2491 (1992).
    連結:
  43. 53. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. springer, S. Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp. 1041-1047 (1993).
    連結:
  44. 54. A. Oedegaard , C. Hebling , A. Schmitz , S. Møller-Holst , R. Tunold, “Influence of Diffusion Layer Properties on Low Temperature DMFC”, J. Power Sources, Vol. 127, pp. 187-196 (2004).
    連結:
  45. 55. K. W. Park, B. K. Kwon, J. H. Choi, I. S. Park, Y. M. Kim, Y. E. Sung, “New RuO2 and Carbon–RuO2 Composite Diffusion Layer for use in Direct Methanol Fuel Cells”, J. Power Sources, Vol. 109, pp. 439-445 (2002).
    連結:
  46. 56. T. Bewer, T. Beckmann, H. Dohle., J. Mergel, D. Stolten, “Novel Method for Investigation of Two-phase Flow in Liquid Feed Direct Methanol Fuel Cells using an Aqueous H2O2 Solution”, J. Power Sources, Vol. 125, pp. 1-9 (2004).
    連結:
  47. 57. J. Kim, S. M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, J. Electrochem. Soc., Vol. 142, pp. 2670-2674 (1995).
    連結:
  48. 58. A. J. Bard, L. R. Faulkner, “Electrochemical Methods Fundamentals and Applications”, JOHN WILEY & SONS, INC., p. 27 (2001).
    連結:
  49. 60. 薛志鴻,“質子交換模型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程系碩士論文 (2003)。
    連結:
  50. 61. J. T. Muller, P. M. Urban, ”Impedance studies of Direct Methanol Fuel Cell Anodes”, J. Power Sources, Vol. 84, pp. 157-160 (1999).
    連結:
  51. 62. J. C. Amphlett, B. A. Peppley, “The Effect of Anode Flow Characteristics and Temperature on the Performance of A Direct Methanol Fuel Cell”, J. Power Sources, Vol. 96, pp. 204-213 (2001).
    連結:
  52. 63. Z. B. Wang, G. P. Yin, Y. Y. Shao, B. Q. Yang, P. F. Shi, P. X. Feng, “Electrochemical impedance studies on carbon supported PtRuNi and PtRu anode catalysts in acid medium for direct methanol fuel cell”, J. Power Sources, Vol. 165, pp. 9-15 (2007).
    連結:
  53. 64. S. Brunauer, “The Adsorption of Gases and Vapor. Vol. I, Physical Adsorption”, Princeton University, Princeton, Now York (1943).
    連結:
  54. 65. S. Brunauer, P. H. Emmett, E. Teller, “Adsorption of Gases in Multimolecular Layers”, J. Am. Chem. Soc., Vol. 60(2), pp. 309-319 (1938).
    連結:
  55. 66. E. P. Barrett, L. G. Joyner, P. P. Halenda, “The Determination of Pore Volume and Area Distributions in Porous Substances”, J. Am. Chem. Soc., Vol. 73, pp. 373-380 (1951).
    連結:
  56. 68. C. Jourent, P. Bernier, “Production of carbon nanotubes”, Appl. Phys. A, Vol. 67, pp. 1-9 (1998).
    連結:
  57. 69. G. Neri, C. Milone, A. Donato, L. Mercadante, A. M. Visce, “Selective Hydrogenation of Citral over Pt-Sn Supported on Activated Carbon”, J. Chem Tech. Biotechnol., Vol. 60, pp. 83-88 (1994).
    連結:
  58. 71. A. E. Aksoylu, M. Madalena A. Freitas, Jose L. Figueiredo, “Bimetallic Pt-Sn catalysts supported on activated carbon.Ⅱ. CO oxidation”, Catalysis Today, Vol. 62, pp. 337-346 (2000).
    連結:
  59. 72. A. Honji, T. Mori, Y. Hishinuma, “Platinum Dispersed on Carbon Catalyst for a Fuel Cell: A Preparation with Sorbitan Monolaurate”, J. Electrochem. Soc., Vol. 137, pp. 2084-2088 (1990).
    連結:
  60. 74. A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi, “A novel Route to Prepare Stable Pt-Ru/C Electrocatalysts for Polymer Electrolyte Fuel Cell”, Electrochim. Acta, Vol. 48, pp. 255-262 (2002).
    連結:
  61. 75. A. S. Arico, Z. Poltarzewski, H. Kim, A. Morana, N. Giordano, V. Antonucci, “Investigation of A Carbon-supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells”, J. Power Sources, Vol. 55, pp. 159-166 (1995).
    連結:
  62. 76. S. A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, “Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells”, J. Electrochem. Soc., Vol. 149, pp. 1299-1304 (2002).
    連結:
  63. 77. M. Gotz, H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on Methanol or Reformate Gas”, Electrochim. Acta, Vol. 43, pp. 3637-3644 (1998).
    連結:
  64. 78. Y. Liu, X. Qiu, Z. Chen, W. Zhu, “A new supported catalyst for methanol oxidation prepared by a reverse micelles method”, Electrochem. Commun., Vol 4, pp. 550-553 (2002).
    連結:
  65. 79. L. Xiong, A. Manthiram, “Catalytic activity of Pt-Ru alloys synthesized by a microemulsion method in direct methanol fuel cells”, Solid State Ionics, Vol 176, pp. 385-392 (2005).
    連結:
  66. 80. X. Zhang, K. Y. Chan, “Water-in-Oil Microemulsion Synthesis of Platinum-Ruthenium Nanoparticles, Their Characterization and Electrocatalytic Properties”, Chem. Mater., Vol 15, pp. 451-459 (2003).
    連結:
  67. 81. X. Zhang, F. Zhang, R. F. Guan, K. Y. Chan, “Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation”, Mater. Res. Bull., Vol 42, pp. 327-333 (2007).
    連結:
  68. 2. F. Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 9 (2005).
  69. 7. A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 15-16 (1989).
  70. 8. 鄭煜騰,鄭耀宗,“質子交換膜型燃料電池的製造技術",能源季刊,第二十七卷,第二期,118頁(1997)。
  71. 9. A. J. Appleby, F. R. Folkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, pp. 32-37 (1989).
  72. 10. 楊志忠,林頌恩,韋文誠,“燃料電池的發展現況",科學發展,367期,30-33頁(2003)。
  73. 16. Z. Ogumi, Tohru Kuroe, Z. I. Takahara, “Gas Permeation in SPE Method - Ⅱ. Oxygen and Hydrogen Permeation through Nafion”, J. Electrochem. Soc., Vol. 132, pp. 2601-2605 (1985).
  74. 43. F. Barbir, “PEM Fuel Cells: theory and practice”, Elsevier Academic Press, p. 94 (2005).
  75. 44. 黃朝榮、林修正,”燃料電池的心臟,科學發展”,367期,26頁(2003)。
  76. 45. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司,台北市,8-5頁 (2004)。
  77. 49. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, p. 23 (1989).
  78. 59. J. S. Newman, “Electrochemical Systems”, Englewood Cliffs, Prentice-Hall, Inc., pp. 380-382 (1991).
  79. 67. 成會明,張勁燕,“奈米碳管”,五南圖書出版公司 (2004)。
  80. 70. G. Neri, C. Milone, S. Galvagno, A. P. J. Pijpers, J. Schwank, “Characterization of Pt-Sn/carbon Hydrogenation Catalysts”, Applied Catalysis A: General, Vol. 227, pp. 105-115 (2002).
  81. 73. 林賜岱,“直接甲醇燃料電池陽極反應機制之研究”,國立台灣科技大學化學工程系碩士論文 (2002)。
  82. 82. J. Gmehling, U. Onken, W. Arlt, “Vapor-Liquid Equilibrium Data Collection”, Main:Dechema, Frankfurt, Vol 1 part 1a, pp. 58-60 (1981).
  83. 83. W. Ernest Flick, “Industrial Solvent Handbook”, U.S.A.:Noyes Data Corp., Park Ridge, N.J., p. 292 (1991).
Times Cited
  1. 陸瑞東(2012)。以十二烷基胺修飾之碳材及海膽型碳材為質子交換膜燃料電池觸媒載體之研究。成功大學化學工程學系學位論文。2012。1-189。 
  2. 黃瑜君(2010)。以次磷酸鈉製備用於直接甲醇燃料電池之PtRu/C觸媒。成功大學化學工程學系學位論文。2010。1-95。