Title

CdS/CdSe量子點敏化TiO2光電極在光電化學電池產氫以及固態太陽能電池之應用

Translated Titles

Applications of CdS/CdSe Quantum Dot-sensitized TiO2 Photoelectrodes for Photoelectrochemical Hydrogen generation and Solid-State Solar Cells

DOI

10.6844/NCKU.2011.00777

Authors

紀景發

Key Words

硫化鎘 ; 硒化鎘 ; 量子點 ; 共敏化效應 ; 光電化學製氫 ; 固態電池 ; 電洞傳輸層 ; 偶極距 ; 表面修飾 ; Cadmium sulfide (CdS) ; cadmium selenide (CdSe) ; Quantum dots (QDs) ; Co-sensitization effect ; Photoelectrochemical hydrogen generation ; Solid state solar cell ; Hole transfer materials ; Dipole moment ; Surface treatment

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

博士

Advisor

李玉郎

Content Language

英文

Chinese Abstract

本研究利用連續離子吸附反應成膜法(Successive ionic layer adsorption reaction, SILAR)將硫化鎘與硒化鎘量子點組裝到二氧化鈦薄膜表面,作為TiO2/CdS/CdSe共敏化光電極,並應用在光電化學系統進行水分解製氫。結果顯示,TiO2/CdS/CdSe光電極具有互補的吸光特性,且硫化鎘與硒化鎘的組裝順序對於共敏化電極之效能有很大的影響。由暗電流與平帶電位量測結果發現TiO2/CdS比TiO2/CdSe有較高的費米能階;而TiO2/CdS/CdSe、TiO2/CdSe/CdS的費米能階位置較TiO2/CdS低,推測CdS與CdSe界面之間可能有能階重排的機制存在。 紫外光光電子譜結果顯示在TiO2/CdS/CdSe電極中,沉積在CdS外層的CdSe,其導帶位置向上移動證實了上述的機制。因此TiO2/CdS/CdSe電極在能階位置上有順向階梯狀的排列,有助於電子電洞對分離,效能相較TiO2/CdS、TiO2/CdSe可提升三倍達到飽和電流密度14.9 mA/cm2 (AM1.5 100 mW/cm2,UV cut-off)。 進一步在此電極上沉積上ZnS保護層,可增加電極穩定性並減少漏電流發生,目前TiO2/CdS/CdSe/ZnS光電極的最佳產氫速率可達到220uL/hr-cm2。 時間解析光激螢光(Time resolved photoluminescence)與開路電壓衰退分析(OCVD)顯示順向能階排列的TiO2/CdS/CdSe光電極導致電子有效地注入到二氧化鈦並維持較低的再結合速率。 另一方面,本研究進一步利用順向能階結構的TiO2/CdS/CdSe共敏化光電極,結合固態電解質(Spiro-OMeTAD)取代液態電解質製作全固態量子點敏化太陽電池。對於2um 膜厚的電極,電池之光電轉換效率為0.61%(AM 1.5, 100mW/cm2)。進一步以雙異戊磷酸(Diisooxy phosphonic acid, DIOPA),與苯硫醇衍生物(Benzenethiol, BT)進行TiO2/CdS/CdSe光電極表面修飾:可抑制漏電流的發生並藉由BT分子的偶極矩促進電子注入到二氧化鈦導帶,改善元件的光電壓與光電流。同時以此兩種分子對光電極表面修飾(TiO2/QDs-BTOMe-DIOPA),元件之光電轉換效率可達0.88% (AM 1.5, 100mW/cm2)。

English Abstract

The method of successive ionic layer adsorption reaction (SILAR) was used to assemble cadmium sulfide (CdS) and cadmium selenide (CdSe) onto mesoporous TiO2 films. CdS/CdSe co-sensitized photoelectrodes were prepared and applied for photoelectrochemical hydrogen generation. The results show that the CdS/CdSe co-sensitized photoelectrodes have a complementary effect on the light harvest, and furthermore, the performance of the electrodes is strongly dependent on the order of CdS and CdSe with respected to the TiO2. Dark current and flat-band measurements revealed that TiO2/CdS has a Fermi-level higher than that of TiO2/CdSe while both Fermi-levels of TiO2/CdS/CdSe and TiO2/CdSe/CdS locate between those of TiO2/CdS and TiO2/CdSe, which implies energy level reorganization occurs at the CdS/CdSe interface. The ultraviolet photoelectron spectroscopy (UPS) analysis showed an upward shift of CdSe conduction band edge in the TiO2/CdS/CdSe, sustaining the inference mentioned above. Therefore, TiO2/CdS/CdSe electrode possess a stepwise structure of energy levels, which is advantageous to the electron injection and hole regeneration in the photoelectrode. The saturated photocurrent achieved by the TiO2/CdS/CdSe electrode is 14.9 mA/cm2 (AM1.5 100 mW/cm2, UV cut-off) which is three times the values obtained by the TiO2/CdS and TiO2/CdSe. By using zinc sulfide as a passivation layer to improve the stability and reduce the leakage current, the corresponding hydrogen evolution rate measured for the TiO2/CdS/CdSe/ZnS electrode is 220 µmol/cm2h. Time resolved photoluminescence (PL) and open-circuit photovoltae decay (OCVD) experiments revealed that the photogenerated electrons in the TiO2/CdS/CdSe have higher injection efficiency, but lower recombination rate to the electrolyte, attributable to the stepwise structure of band-edge levels constructed by the effect of the energy level alignment. Furthermore, TiO2/CdS/CdSe co-sensitized electrode was utilized to fabricate all-solid-state quantum dot sensitized solar cells (QD-SSCs) by using an organic hole transport material (Spiro-OMeTAD), instead of liquid electrolytes. An overall conversion efficiency of 0.65 % (AM 1.5, 100 mW/cm2) was obtained for the TiO2/CdS/CdSe electrode of 2 μm in thickness. Moreover, diisooctyl phosphonic acid (DIOPA) and benzenethiol derivatives were used as surface-modifying agents of the TiO2/CdS/CdSe electrode. It was found that the dipole-moment induced by the surface-modified layers can inhibit the charge recombination, facilitate charge injection from QDs to TiO2, and therefore, enhance photovoltage and photocurrent of the QD-SSC. The overall conversion efficiency achieved by the TiO2/QDs-BTOMe-DIOPA electrode is 0.88%.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. Chapter 1
    連結:
  2. [1] Becquerel, A. E. Comt. Rend. Acad. Sci 1839, 9, 561.
    連結:
  3. [9] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103.
    連結:
  4. [12] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Solar cell efficiency tables (version 36). Prog. Photovoltaics Res. Appl. 2010, 18, 346.
    連結:
  5. [15] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides Science, 2001, 293, 269.
    連結:
  6. [17] A. Fujishima, K. Honda, Nature, 1972, 238, 37.
    連結:
  7. [18] O. Khaselev, J. A. Turner, Science 1998, 280, 425.
    連結:
  8. [20] Grätzel, M. Nature, 2001. 414, 338.
    連結:
  9. [1] Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    連結:
  10. [3] Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525
    連結:
  11. [4] Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086.
    連結:
  12. [9] Wang, Q.; Seo, D. K. Chem. Mater. 2006, 18, 5764.
    連結:
  13. [13] Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L. Nano Lett. 2005, 5, 865.
    連結:
  14. [15] Nozik, A. J. Physica E 2002, 14, 115.
    連結:
  15. [16] Arachchige, I. U.; Brock, S. L. Acc. Chem. Res. 2007, 40, 801.
    連結:
  16. [17] Pileni, M. P. J. Phys. Chem. 1993, 97, 6961.
    連結:
  17. [21] Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X.-M.; Li, F. Q. J. Phys. Chem. B 2006, 110, 11704.
    連結:
  18. [22] Britt, J.; Ferekides, C. Appl. Phys. Lett. 1993, 62, 2851.
    連結:
  19. [23] Dona, J. M.; Herero, J. J. Electrochem. Soc. 1997, 144, 4091.
    連結:
  20. [24] Contreras-Puente, G. Thin Solid Films 2000, 361, 378.
    連結:
  21. [25] Blackburn, J. L.; Selmarten, D. C.; Nozik, A. J. J. Phys. Chem. B 2003, 107, 14154.
    連結:
  22. [28] Lee, T. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903.
    連結:
  23. [29] Shen, Y. J.; Lee, Y. H. Nanotechnology 2008, 19, 045602.
    連結:
  24. [30] Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.;Yang, Y. M. Appl. Phys.Lett. 2007, 90, 143517.
    連結:
  25. [31] Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and application (2nd Ed.) Chapter 18, page 750 and 755.
    連結:
  26. [33] Mollers, F.; Tolle, H. J.; Memming, R. J. Electrochem. Soc.1974, 121, 1160.
    連結:
  27. [35] Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27, 91.
    連結:
  28. [37] Spitler, M.T. J. Chem. Educ. 1983. 60, 330.
    連結:
  29. [40] Chen, X.; Mao, S. S. Chem. Rev.,2007, 107, 2891.
    連結:
  30. [41] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103.
    連結:
  31. [42] Grätzel, M. Acc. Chem. Res. 2009, 42, 1788.
    連結:
  32. [43] Wolfbauer, G.; Bond, A. M.; Eklund, J. C.; MacFarlane, D. R. Sol. Energy Mater. Sol. Cells 2001, 70, 85.
    連結:
  33. [44] Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S.; Sol. Energy Mater. Sol. Cells 2008, 92, 814.
    連結:
  34. [47] Lee, Y. L.; Chang, C. H. Appl. Phys.Lett. 2007, 91, 053503.
    連結:
  35. [50] Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604.
    連結:
  36. [52] Yang, Z.; Chen, C. Y.; Liu, C. W.; Chang, H. T. Chem. Comm. 2010, 46, 5484.
    連結:
  37. [53] Tubtimate, A.; Wu, K. L.; Tung, H. Y.; Lee, M. W.; Wang, G. J. Electro. Commun. 2010, 12, 1158.
    連結:
  38. [54] Kuo, K. T.; Liu, D. M.; Chen, S. Y.; Lin, C. C. J. Mater. Chem. 2009, 19, 6780.
    連結:
  39. [58] Naito, K.; Miura, A. J. Phys. Chem. 1993, 97, 6240.
    連結:
  40. [59] Naito, K. Chem. Mater. 1994, 6, 2343.
    連結:
  41. [60] Poplavskyy, D.; Nelson. J. J Appl Phys 2003, 93, 341.
    連結:
  42. [62] Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.
    連結:
  43. [69] Nelson, J. The Physics of Solar Cells, World Scientific Pub Co Inc 2003.
    連結:
  44. [1] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
    連結:
  45. [2] Kazuhiko, M.;Kazunari, D. J. Phys. Chem. C 2007, 111, 7851.
    連結:
  46. [3] Kato, H.;Asakura, K.;Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
    連結:
  47. [10] Lin, S. C.; Lee, Y. L.; Chang, C. H.; Shen, Y. J.; Yang, Y. M. Appl. Phys. Lett. 2007, 90, 143517.
    連結:
  48. [12] Lee, Y. L.; Huang, B. M.; Chien, H. T. Chem. Mater. 2008, 20, 6903.
    連結:
  49. [14] Hoyer, P. ; Könenkamp, R. Appl. Phys. Lett. 1995, 66, 349.
    連結:
  50. [15] Schaller, R. D.; Klimov, V. I. Phys. Rev. Lett. 2004, 92, 186601.
    連結:
  51. [17] Mane, R.S. Electrochimica Acta, 2005. 50, 2453.
    連結:
  52. [18] De, G.C.; Roy, A.M.; Bhattacharya, S.S. Int. J. Hydrogen Energy, 1995. 20, 127.
    連結:
  53. [19] Spanhel L, Haase M, Weller H and Henglein A. J. Am. Chem. Soc. 1987, 109, 5649.
    連結:
  54. [21] Grätzel, M. Nature, 2001. 414, 338.
    連結:
  55. [22] Mollers, F.; Tolle, H. J.; Memming, R. J. Electrochem. Soc. 1974, 121, 1160.
    連結:
  56. [23] Khan, S. U. M.; Akikusa, J. J. Electrochem. Soc. 1974, 145, 89.
    連結:
  57. [25] Yoon, K. H.; Shin, C. W.; Kang, D. H. J. Appl. Phys. 1997, 81, 7024.
    連結:
  58. [27] Yang, S. M.; Huang, C. H.; Zhai, J.; Wang Z. S.; Jiang L. J. Mater. Chem. 2002, 12, 1459.
    連結:
  59. [31] Seol, M.; Kim, H.; Kim, W.; Yong, K. Electro. Commun. 2010, 12 1416.
    連結:
  60. [34] Chen, H. M.; Chen, C. K.; Chanf, Y. C.; Tsai, C. W.; Liu, R. S.; Hu, S. F.; Chang, W. S.; Chen, K. H. Angew. Chem. Int. Ed. 2010, 49, 5966.
    連結:
  61. [35] De, G. C.; Roy, A. M.; Bhattacharya, S. S. Int. J. Hydrogen Energy 1996, 21, 19.
    連結:
  62. [1] Fan, S. Q.; Kim, D.; Kim, J. J.; Jung, D. W.; Kang, S. O.; Ko, J. Electroc. Commun. 2009, 11, 1337.
    連結:
  63. [4] Lan, G. Y.; Yang, Z.; Lin, Y.W.; Lin, Z. H.; Liao, H. Y.; Chang, H. T. J. Mater. Chem. 2009, 19, 2349.
    連結:
  64. [6] Kuo, K. T.; Liu, D. M.; Chen, S. Y.; Lin, C. C. J. Mater. Chem. 2009, 19, 6780.
    連結:
  65. Chem. C 2010, 114, 15184.
    連結:
  66. [8] Bang, J.; Park, J.; Lee, J. H.; Won, N.; Nam,J.; Lim, J.; Chang, B. Y.; Lee, H. J.; Chon, B.;Shin, J.; Park, J. B.; Choi, J. H.; Cho, K.; Park, S. M.; Joo, T.; Kim, S.Chem. Mater. 2010, 22, 233.
    連結:
  67. [12] Lee, Y. L.; Lo, Y. S. Adv. Funct. Mater. 2009, 19, 604.
    連結:
  68. [13] Grätzel, M. Nature 2001, 414, 338.
    連結:
  69. [15]Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859
    連結:
  70. Chapter 5
    連結:
  71. [8] Chen, C. Y.; Wang, M.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Cevey-ha, N. L.; Decoppet, J. D.; Tsai, J. H.; Grätzel, C.; Wu, C. G. ACS Nano, 2010, 3, 3103-3109.
    連結:
  72. [9] Snaith, H. J.; Moule, A. J.; Klein, C.; Meerholz, K.; Friend, R. H.; Grätzel, M. Efficiency Enhancements in Solid-State Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture. Nano Lett. 2007, 7, 3372-3376.
    連結:
  73. [12]Wang, M.; Chen, P.; Humphry-Baker, R.; Zakeeruddin, S. M. Grätzel, M. ChemPhysChem 2009, 10, 290-299.
    連結:
  74. [14]Ding, I. K.; Tétreault, N.; Jérémie B.; Hardin, B. E.; Smith, E. H.; Rosenthal, S. J.; Sauvage, F.; Grätzel, M.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 2431-2436.
    連結:
  75. [15]Yu, W. W.; Qu, L.; Guo, W.; Peng, W. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854-2860.
    連結:
  76. [16]Baskoutas, S.; Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 2006, 99, 013708.
    連結:
  77. [26] Kavan, L.; Grätzel, M. Electrochimica acta 1995, 40, 643.
    連結:
  78. [28] Lee, H.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735.
    連結:
  79. [2] M. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovoltaics Res. Appl.2008, 16, 435.
  80. [3] Schock, H. W.; Noufi, R. Prog. Photovolt. Res. Appl. 2000, 8, 151.
  81. [4] Wagner, S.; Shay, J. L.; Migliora.P; Kasper, H. M. Appl. Phys. Lett. 1974, 25, 434.
  82. Thin-film solar cells: next generation photovoltaics and its applications, edited by Y. Hamakawa (Springer-Verlag Berlin Heidelberg, 2004).
  83. [5] R. Herberholz, V. Nadenau, U. Rühle, C. KÖble, H. W. Schock and B. Dimmler, Solar Energy Mater. Solar Cells 1997, 49, 227.
  84. [6] T. M. Friedlmeier, D. Braunger, D. Hariskos, M. Kaiser, H. N. Wanka and H. W. Schock, 25th Photov. Spec. Conf. I EEE, New York, 1996, p845.
  85. [7] Contreras MA, Egaas B, Ramanathan K, Hiltner J,Swartzlander A, Hasoon F, Noufi R. Pro. in Photovoltaics: Res. and App. 1999, 7, 311.
  86. [8] O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.
  87. [10] See http://www.reuters.com/article/idUST15201920080525
  88. [11] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L. Adv. Mater. 2010,22,1.
  89. [13] M. Ni, M. K. H. Leung, K. Sumathy, D. Y. C. Leung, Beijing P. R. C., 2004, 1, 475.
  90. [14]Ajay K. Ray, A.A.C.M.B. AIChE Journal, 1998, 44, 477.
  91. [16] Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa, Nature, 2001, 414, 625.
  92. [19] See http://www.eyesolarlux.com/Solar-simulation-ASTM-IEC-JIS.htm
  93. Chapter 2
  94. [2] Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.
  95. [5] Rossetti, R.;Ellison, J. L.; Gibson, J. M. J. Chem. Phys. 1983, 80, 4464.
  96. [6]Baskoutas, S.; Terzis, A. F. J. Appl. Phys. 2006, 99, 013708.
  97. [7] Landsberg, P.T. ; Nussbaumer, H.; Willeke, G. J. Appl. Phys. 1993, 74, 1451.
  98. [8] Kolodinski, S.; Werner, J.H.; Wittchen, T.; Queisser, H. J. Appl. Phys. Lett. 1993, 63, 2405.
  99. [10] Yu, W. W.; Qu, L.; Guo, W.; Peng, W. Chem. Mater. 2003, 15, 2854.
  100. [11] Christensen, O. J. Appl. Phys. 1976, 47, 690.
  101. [12] Wolf, M.; Brendel, R.; Werner, J. H.; Queisser, H. J. J. Appl. Phys. 1998, 83, 4213
  102. [14] Shockley, W.; Queisser, H. J. J. Appl. Phys.1961, 32, 510.
  103. [18] Zhang, Z.; Dai, S.; Fan, X.; Blom, D. A.; Pennycook, S. J.; Wei, Y. J. Phys. Chem. B. 2001, 105, 6755.
  104. [19] Yang, J.; Lin, H.; He, Q.; Ling, L.; Zhu, C.; Bai, F. Langmuir 2001, 17, 5978.
  105. [20] Wang, Q. Q.; Xu, G.; Han, G. R. Cryst. Growth Des. 2006, 6, 1176.
  106. [26] Kanniainen, T,; Lindroos, S.; Ihanus, J.; Leskela, M. J. Mater. Chem. 1996, 6, 983
  107. [27] Kongkanand, A.; Tvrdy, K.; Takechi, K; Kuno, M.; P. V. Kamat J. Am. Chem. Soc. 2008, 130, 4007.
  108. [32] Morrison, S. R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes, 1980, page 56.
  109. [34]Bard, A. J.; Faulkner, L. R. Electrochemical Methods Fundamental and application (2nd Ed.) Chapter 18, page 756.
  110. [36] Becquerel, E., C.R. Acad. Sci. Paris, 1839, 9, 561.
  111. [38] O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
  112. [39] Nazeeruddin, M. K.; Angelis, F. A. Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835.
  113. [45] Wang, M.; Anghel, A. M.; Marsan , B. Cevey Ha, n. L.; Pootrakulchote , N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976.
  114. [46] Mora-Seró , I.; Giménez, S.; Fabregat-Santiago, F.; GóMEZ, R.; Shen,Q.; Toyoda, T,; Bisqert, J. Acc. Chem. Res. 2009, 42, 1848.
  115. [48] Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys.Lett. 2007, 91, 023116.
  116. [49] Lee, H. J.; Chen, P.; Moon, S. J.; Sauvage, F.; Sivula, K.; Bessho, T.; Gamelin, D. R.; Comte, P.; Zakeeruddin, S. M.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K. J. Phys. Chem. C 2008, 112, 11600.
  117. [51] Fan, S. Q.; Fang, B.; Kim, J. H.; Kim, J. J.; Yu, J. S.; Ko, J. Appl. Phys.Lett. 2010, 96, 063501.
  118. [55] Wang, M.; Liu, J.; Cevey-Ha, N. L.; Moon, S. J.; Liska, P.; Humphry-Bakera, R.; Mosera, J. E.; Grätzel, C.; Wang, P.; Zakeeruddina, S. M.; Grätzel, M. Nano Today 2010, 5, 169.
  119. [56] Salbeck, J.; Yu, N.; Bauer, J.; Weissörtel, F.; Bestgen, H. Synthetic Metals
  120. 1997, 91, 209.
  121. [57] Facci, J. S.; Abkowitz, M.; Limburg, W. J Phys Chem 1991, 95, 7908.
  122. [61] Plass, R.; Pelet, S.; Krüger, J..; Grätzel, M. J. Phys. Chem. B 2002, 106, 7578.
  123. [63] Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett, 2009, 9, 4221-4227.
  124. [64]Chang, J. A.; Rhee, J. H.; Im,S. H.; Lee, Y. H.; Kim, H. J.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2010, 10, 2609.
  125. [65] Moon, S. J.; Itzhaik, Y.; Yum, J. H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M. J. Phys. Chem. Lett. 2010, 1, 1524.
  126. [66] Khan, S.U.M.; Al-Shahry, M.; Ingler, Jr. W.B. Science, 2002. 297, 2243.
  127. [67] Hägglund, C.; Grätzel, M.; Kasemo, B. Comment on reference 66 (II) Science, 2003, 301, 1673b.
  128. [68] Lackner, K. S. Comment on reference 66 (III) Science, 2003, 301, 1673c.
  129. [70] Barnes, P. R. F., Anderson, A. Y.; Koops, S. E.; Durrant, J. R.; O’Regan B. C. J. Phys. Chem. C 2009, 113, 1126.
  130. Chapter 3
  131. [4] Wang, Y.;Zh5ang, Z.;Zhu, Y.;Li, Z.;Vajtai, R.;Ci, L.;Ajayan, P. M. ACS Nano. 208, 2, 1492.
  132. [5] Maeda, K.;Takata, T.;Hara, M.;Saito, N.;Inoue, Y.;Kobayashi, H.;Domen, K. J. Am. Chem. Soc. 2005, 127, 8286.
  133. [6] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Science 2001, 293, 269
  134. [7] Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, L. S. J. Phys. Chem. C 2007, 111, 8677.
  135. [8] Khan, S. U. M.; Al-Shahry, M.; Ingler Jr, W. B. Science 2002, 297, 2243.
  136. [9] Peter, L. M.; Riley, D. J.; Tull, E. J.; Wijayantha, K. G.. U. Chem. Commun. 2002, 10, 1030.
  137. [11] Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.
  138. [13] Plass, R.; Serge, P.; Krüger, J.; Grätzel, M. J. Phys. Chem. B. 2002, 106, 7578.
  139. [16] Zaban, A.; Micici, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153.
  140. [20] Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854.
  141. [24]Gryse, R. D.; Gomes, W. P.; Cardon, F.; Vennik, J. J. Electrochem. Soc.: Solid-state Science and Technology, 1975, p711.
  142. [26] Diguna, L.J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116.
  143. [28] Sun, W. T.; Tu,Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc. 2008, 130, 1124.
  144. [29] Wang, H.; Bai, Y.; Zhang, H.; Zhang, Z.; Li, J.; Guo, L. J. Phys. Chem. C 2010, 114, 16451.
  145. [30] Gao, X. F.; Sun, W. T.; A, Guo.;Peng, L. M. Appl. Phys. Lett. 2010, 96, 53104.
  146. [32]E Seabold, J. A.; Shankar, K.; Wilke, R. H. T.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Choi K. S. Chem. Mater. 2008, 20, 5266.
  147. [33] Gao, X. F.; Li, H. B.; Sun, W. T.; Chen, Q.; Tang, F. Q.; Peng, L. M. J. Phys. Chem. C 2009, 113, 7531.
  148. Chapter 4
  149. [2] Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno M.; Kamat, P. V. J. Am. Chem. Soc. 2008, 130, 4007.
  150. [3] Plass, R.; Serge, P.; Krüger, J.; Grätzel, M. J. Phys. Chem. B. 2002, 106, 7578.
  151. [5] Ryan, O.; Marian, N.; Joop, S.; Albert, G. Nanotechnology 2007, 18, 055702.
  152. [7] Ning, Z.; Tian, H.; Qin, H.; Zhang, Q.; Ågren, H.; Sun, L.; Fu, Y.J. Phys.
  153. [9] Chun, W. J.; Ishikawa, A.; Fujisawa, H.; Takata, T.; Kondo, J. N.; Hara, Mi.; Kawai, M.; Matsumoto, Y.; Domen, K. J. Phys. Chem. B 2003, 107, 1798.
  154. [10]Liu, G.; Jaegermann, W.; He, J.; Sundström, V.;Sun, L. J. Phys. Chem. B 2002, 106, 5814.
  155. [11]Carlson, B.; Leschkies, K.; Aydil, E. S.; Zhu, X. Y. J. Phys. Chem. C 2008, 112, 8419.
  156. [14]Bisquert, J.; Zaban, A.; Greenshtein, M.; I. Mora-Sero J. Am. Chem. Soc. 2004, 126, 13550.
  157. [1] Dalton, L. R.; Sullivan, P. A.; Bale, D.; Olbricht, B.; Davies, J.; Benight, S.; Kosilkin, I.; Robinson, B. H.; Eichinger, B. E.; Jen, A. K.-Y. Organic Thin Films for Photonic Applications, Chapter 2, 2010, 139, 13-33 ACS Symposium Series.
  158. [2] Yang, R.; Xu, Y.; Dang, X. D.; Nguyen, T. Q.; Cao, Y.; Bazan, G. C J. Am. Chem. Soc. 2008, 130, 3282-3283.
  159. [3] Gebeyehu, D.; Brabec, C. J.; Padinger, F.; Fromherz, T.; Spiekermann, S.; Vlachopoulos, N.; Kienberger, F.; Schindler, H.; Sariciftci, N. S. Synthetic Metals, 121, 2001, 1549-1550.
  160. [4] Wang, Y.; Yang, K.; Kim, S. C.; Nagarajan, R,; Samuelson, L. A.; Kumar, J. Chem. Mater. 2006, 18, 4215-4217.
  161. [5] Poplavskyy, D.; Nelson, J. J. Appl. Phys. 2003, 93, 341-346.
  162. [6] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Fuhrmann-Lieker, T.; Salbeck, J. Chem. Rev. 2007, 107, 1011-1065
  163. [7] Bach, U.; Tachibana, Y.; Moser, J. E.; Haque, S. A.; Durrant, J. R.; Gra¨tzel, M.; Klug, D. R. J. Am. Chem. Soc. 1999, 121, 7445-7446
  164. [10]Krüger, J.; Plass, R.; Grätzel, M.; Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 7536-7539.
  165. [11]Fabregat-Santiago, F.; Bisquert, J.; Cevey, L.; Chen, P.; Wang, W.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 558–562.
  166. [13]Cappel, U. B.; Gibson, E. A.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2009, 113, 6275-6281.
  167. [17]Sambur, J. B.; Novet, T.; Parkinson, B. A. Science 2010, 330, 63-66.
  168. [18] Lee, H.; Wang, M.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Nano Lett, 2009, 9, 4221-4227.
  169. [19]Chang, J. A.; Rhee, J. H.; Im,S. H.; Lee, Y. H.; Kim, H. J.; Seok, S. I.; Nazeeruddin, M. K.; Grätzel, M. Nano Lett. 2010, 10, 2609–2612.
  170. [20] Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Grätzel, M. Adv. Mater. 2003, 15, 2101–2104.
  171. [21] Wang, M.; Grätzel, C.; Moon, S. J.; Humphry-Baker, R.; Rossier-Iten, N.; Zakeeruddin, S. M.; Grätzel, M. Adv. Funct. Mater. 2009, 19, 2163–217.
  172. [22] Krüger, J.; Bach, U.; Grätzel, M.; Adv. Mater. 2000, 12, 447-451.
  173. [23]Yum, J. H.; Moon, S. J.; Humphry-Baker, R.; Walter, P.; Geiger, T.; N¨uesch, F.; Grätzel, M.; Nazeeruddin, M. K. Nanotechnology 2008, 19, 424005.
  174. [24] Shalom, M.; Rühle, S.; Hod, I.; Yahav,; Zaban A.; J. Am. Chem. Soc. 2009, 131, 9876-9877.
  175. [25]Barea, E. M.; Shalom, M.; Giménez, S.; Hod, I.; Mora-Seró, I.; Zaban, A.; Bisquert, J. J. Am. Chem. Soc. 2010, 132, 6834-6839.
  176. [27] Ito, S.; Nazeeruddin, M. K.; Pascal Comte, P. L.; Charvet, R.; Péchy, P.; Jirousek, M.; Kay, A.; Zakeeruddin, S. M.; Grätzel, M. Prog. Photovolt: Res. Appl. 2006,14, 589–601.
  177. [29] Moon, S. J.; Itzhaik, Y.; Yum, J. H.; Zakeeruddin, S. M.; Hodes, G.; Grätzel, M. J. Phys. Chem. Lett. 2010, 1, 1524.