Translated Titles

Investigation of Atmospheric Turbulence Scales of Northeast Monsoons and Typhoons



Key Words

光學雷達剖風儀 ; 大氣邊界層 ; 大氣紊流 ; 海陸風 ; Lidar measurement ; Atmospheric boundary layer ; Atmospheric turbulence ; Land sea breeze



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究以WindCube v2光學雷達剖風儀,分別架設於三位址實地量測,針對所觀測之東北季風與兩筆登陸颱風數據進行分析。經由計算平均風速、風向及風切變指數等平均風特徵參數選定具代表性之風況時段,並由紊流強度、雷諾應力及紊流動能等物理量呈現大氣紊流特徵,再以自相關函數計算大氣紊流尺度,以探討不同天氣形態下大氣紊流特性。 由兩個東北季風案例比較,可知日夜海陸風循環與地表粗糙度,對近地表邊界層的紊流發展影響劇烈,主流向紊流尺度分佈顯示相同的結論。由於颱風的移動,風場有不同的發展階段,因而產生不同的紊流特性,且紊流長度尺度與紊流動能的大小有關。當氣壓到達最低時,近地表處紊流動能與紊流強度皆為極大值,並隨高度增加而迅速遞減,此一特徵亦與主流向雷諾應力分佈吻合,且於風速迅速遞減的衰弱期,紊流機制為小尺度渦流所主導。

English Abstract

The aim of the present study is to investigate the atmospheric turbulence scales of northeast monsoons and two landed typhoons measured at different sites. The field measurements were made using a WindCube v2 wind Lidar. Mean wind speed, turbulence intensity and turbulent Reynolds stresses varied with respect to the time period and the representative periods were selected to further examinations. Time scales of turbulence fluctuations were integrated from the autocorrelation function to characterize atmospheric turbulence in different weather environment. Two northeast monsoon measurements show that both of the land-sea breeze and the surface roughness considerably affects the distributions of the longitudinal turbulence scales in the surface layer. However, atmospheric turbulence scales in typhoon winds are varied with respect to different stages in typhoon process. With the typhoons reaching the minimum atmospheric pressure, both of turbulence intensity and turbulent kinetic energy had the maximum values occurred near the surface layer, and significantly decreased with the vertical height. This feature is observed in the longitudinal distribution of Reynolds stress. Also the small-scale eddies predominated the turbulent behavior at the stage of wind speed decay.

Topic Category 工學院 > 航空太空工程學系
工程學 > 交通運輸工程
  1. [1] 4C. Offshore, “Global Offshore Wind Speeds Rankings,” 4C Offshore website, version on 15.06.2017.
  2. [2] M. Shiotani, “Some notes on the structure of wind in the lowest layer of the atmosphere,” Journal of the Meteorological Society of Japan. Ser. II, vol. 31, no. 10, pp. 327-335, 1953.
  3. [3] J. Counihan, “Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972,” Atmospheric Environment (1967), vol. 9, no. 10, pp. 871-905, 1975.
  4. [4] B. Yu, A. G. Chowdhury, and F. J. Masters, “Hurricane wind power spectra, cospectra, and integral length scales,” Boundary-layer meteorology, vol. 129, no. 3, pp. 411-430, 2008.
  5. [5] IEC, “Wind turbines – part 1: Design requirements,” International Electrotechnical Commission, IEC 61400-1, 2005.
  6. [6] Y. Q. Xiao, L. X. Li, and L. L. Song, “Study on typhoon wind characteristics based on field measurements,” In The Seventh Asia-Pacific Conference on Wind Engineering, pp. 8-12, 2009, November.
  7. [7] Maplogs, “Sunset Sunrise Times Lookup,” Maplogs website, version on 15.06.2017.
  8. [8] WWEA, “Half-year Report,” The World Wind Energy Association, 2016.
  9. [9] TWTP, “Current Status of Onshore Wind Power,” Thousand Wind Turbines Promotion Project website, version on 15.06.2017.
  10. [10] L. Fried, S. Shukla, S. Sawyer, and S. Teske, “Global Wind Outlook 2016,” 2016.
  11. [11] 經濟部能源局, “能源產業技術白皮書,” 經濟部能源局, 2016.
  12. [12] S. T. Frandsen, “Turbulence and turbulence-generated structural loading in wind turbine clusters,” 2007.
  13. [13] IEC, “Wind turbines – part 12–1: Power performance measurements of electricity producing wind turbines,” International Electrotechnical Commission, IEC 61400-12-1, 2005.
  14. [14] J. R. Garratt, “Review: the atmospheric boundary layer,” Earth-Science Reviews, vol. 37, no. 1-2, pp. 89-134, 1994.
  15. [15] R. B. Stull, “An Introduction to Boundary Layer Meteorology,” Springer Science & Business Media, vol. 13, 1988.
  16. [16] J. Malcher, and H. Kraus, “Low-level jet phenomena described by an integrated dynamical PBL model,” Boundary-Layer Meteorology, vol. 27, no. 4, pp. 327-343, 1983.
  17. [17] T. S. El-Madany, H. F. Duarte, D. J. Durden, B. Paas, M. J. Deventer, J. Y. Juang, and O. Klemm, “Low-level jets and above-canopy drainage as causes of turbulent exchange in the nocturnal boundary layer,” Biogeosciences, vol. 11, pp. 4507-4519, 2014.
  18. [18] C. W. Chiang, and J. B. Nee, “Evolution and Changes of Nocturnal Boundary Layer at Chung-Li by Lidar Measurements,” Atmospheric Sciences, vol. 35, no. 1, pp. 1-11, 2007.
  19. [19] H. A. Panofsky, and J. A. Dutton, “Atmospheric turbulence,” John Wiley, 1983.
  20. [20] A. S. Monin, and A. M. F. Obukhov, “Basic laws of turbulent mixing in the surface layer of the atmosphere,” Contrib. Geophys. Inst. Acad. Sci. USSR, vol. 151, no. 163, pp. e187, 1954.
  21. [21] F. Fujibe, and T. Asai, “A detailed analysis of the land and sea breeze in the Sagami Bay area in summer,” Journal of the Meteorological Society of Japan. Ser. II, vol. 62, no. 3, pp. 534-551, 1984.
  22. [22] J. R. Holton, and G. J. Hakim, “An introduction to dynamic meteorology,” Academic press, vol. 88, 2012.
  23. [23] IEC, “Wind turbines – Part 3: Design requirements for offshore wind turbines,” International Electrotechnical Commission, IEC 61400-3, 2009.
  24. [24] Y. Tamura, K. Suda, A. Sasaki, Y. Iwatani, K. Fujii, K. Hibi, and R. Ishibashi, “Wind speed profiles measured over ground using Doppler sodars,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 83, no. 1, pp. 83-93, 1999.
  25. [25] S. A. Hsu, E. A. Meindl, and D. B. Gilhousen, “Determining the power-law wind-profile exponent under near-neutral stability conditions at sea,” Journal of Applied Meteorology, vol. 33, no. 6, pp. 757-765, 1994.
  26. [26] Y. Tamura, K. Suda, A. Sasaki, K. Miyashita, Y. Iwatani, T. Maruyama, and R. Ishibashi, “Simultaneous wind measurements over two sites using Doppler sodars,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 89, no. 14, pp. 1647-1656, 2001.
  27. [27] U. L. F. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation,” Boundary-Layer Meteorology, vol. 42, no. 1, pp. 55-78, 1988.
  28. [28] H. Tennekes, and J. L. Lumley, “A first course in turbulence,” MIT press, 1972.
  29. [29] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi, “Wind energy handbook (2nd Edition),” John Wiley & Sons, 2011.
  30. [30] J. M. McDonough, “Introductory lectures on turbulence physics,” mathematics and modeling, 2004.
  31. [31] G. I. Taylor, “Eddy motion in the atmosphere,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 215, no. 1-26, 1915.
  32. [32] J. C. Wyngaard, and O. R. Coté, “The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer,” Journal of the Atmospheric Sciences, vol. 28, no. 2, pp. 190-201, 1971.
  33. [33] W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” Journal of Atmospheric and Oceanic Technology, vol. 6, no. 5, pp. 809-819, 1989.
  34. [34] M. Rotach, “Turbulence within and above an urban canopy,” Doctoral dissertation, 1991.
  35. [35] R. J. Barthelmie, B. Grisogono, and S. C. Pryor, “Observations and simulations of diurnal cycles of near-surface wind speeds over land and sea,” Journal of Geophysical Research-Atmospheres, vol. 101, no. D16, pp. 21327-21337, 1996.
  36. [36] W. Schlez, “Voltage fluctuations caused by groups of wind turbines,” Doctoral dissertation, © Wolfgang Schlez, 2000.
  37. [37] Leaosphere, “WindCube V2 User Manual,” version 05 Rev.01.
  38. [38] R. Frehlich, S. M. Hannon, and S. W. Henderson, “Coherent Doppler lidar measurements of wind field statistics,” Boundary-Layer Meteorology, vol. 86, no. 2, pp. 233-256, 1998.
  39. [39] C. Slinger, and M. Harris, “Introduction to continuous-wave Doppler lidar. ,” Summer School in Remote Sensing for Wind Energy, 2012.
  40. [40] J. P. Cariou, “Pulsed lidars,” Remote Sensing for Wind Energy, pp. 104-121, 2011.
  41. [41] A. Peña, C. B. Hasager, M. Badger, R. J. Barthelmie, F. Bingöl, J. P. Cariou, and S. E. Larsen, “Remote Sensing for Wind Energy,” DTU Wind Energy, 2015.
  42. [42] S. F. Clifford, and S. Wandzura, “Monostatic heterodyne lidar performance: the effect of the turbulent atmosphere,” Applied optics, vol. 20, no. 3, pp. 514-516, 1981.
  43. [43] L. Lading, S. Hanson, and A. S. Jensen, “Diffraction-limited lidars: the impact of refractive turbulence,” Applied optics, vol. 23, no. 15, pp. 2492-2497, 1984.
  44. [44] R. Wagner, and J. Bejdic, “Windcube+ FCR test at Hrgud, Bosnia and Herzegovina,” DTU Wind Energy, 2014.
  45. [45] M. Courtney, R. Wagner, and P. Lindelöw, “Commercial lidar profilers for wind energy: A comparative guide,” In Proc. European Wind Energy Conference, 2008, April.
  46. [46] C. B. Hasager, A. Pena Diaz, T. Mikkelsen, S.-E. Gryning, M. Courtney, and P. B. Sørensen, “12 MW: Final report. Roskilde: Danmarks Tekniske Universitet,” Risø Nationallaboratoriet for Bæredygtig Energi, 2009.
  47. [47] A. Albers, A. W. Janssen, and J. Mander, “German test station for remote wind sensing devices,” measurement, vol. 3, pp. 1, 2009.
  48. [48] I. Campbell, “A Comparison of Remote Sensing Device Performance at Rotsea,” RES Ltd, 2011.
  49. [49] A. Westerhellweg, B. Canadillas, A. Beeken, and T. Neumann, “One year of LiDAR measurements at FINO1-Platform: Comparison and verification to met-mast data,” In Proceedings of 10th German wind energy conference DEWEK, pp. 1-5, 2010, November.
  50. [50] J. Mann, A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, “Lidar scanning of momentum flux in and above the atmospheric surface layer,” Journal of Atmospheric and Oceanic Technology, vol. 27, no. 6, pp. 959-976, 2010.
  51. [51] Y. S. Tsai, C. Wu, C. Li, and P. H. Lin, “Intertidal zone wind profiling using Lidar measurement,” In Proceedings of 35rd Ocean Engineering Conference, 2013.
  52. [52] Y. S. Tsai, Yang, Y. C., Chang, W. T., & Yang, W. C., “Wind speed profiles of typhoon Matmo observed using a Doppler Lidar,” Proceedings of the 38th Ocean Engineering Conference in Taiwan, 2016, December.
  53. [53] CWB, “Typhoon DataBase,” Ministry of Transportation and Communications, Central Weather Bureau, version on 15.06.2017.
  54. [54] 周庭光, “彰濱漢寶潮間帶光達風場量測,” 成功大學航空太空工程學系學位論文, pp. 1-114, 2016.
  55. [55] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998, March.
  56. [56] IEC, “Wind turbines – part 12–1: Power performance measurements of electricity producing wind turbines,” International Electrotechnical Commission, IEC 61400-12-1:RLV, 2017.
  57. [57] O. Standard, “Design of offshore wind turbine structures,” DET NOR SKE VERITAS, DNV-OS-J101, 2014.
  58. [58] D. N. Veritas, “Design and manufacture of wind turbine blades, offshore and onshore wind turbines,” DNV Standard, DNV-DS-J102, 2010.