Title

含熱交聯官能基之三苯胺芴衍生物:合成與光電性質

Translated Titles

Thermally Cross-linkable Fluorene Derivative Containing Triphenylamine Moieties: Synthesis, Optoelectronic Properties and Application in Light-emitting Diodes

DOI

10.6844/NCKU.2011.01160

Authors

楊雅茹

Key Words

有機發光二極體 ; 熱交聯 ; 電洞傳遞材料 ; 三苯胺 ; OLED ; thermal cross-linkable ; hole transporting ; triphenylamine

PublicationName

成功大學化學工程學系學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

陳雲

Content Language

繁體中文

Chinese Abstract

有機發光二極體已被廣泛的研究,藉由從陽極、陰極分別注入電洞及電子在發光層中再結合,發出不同光色,而電荷注入及傳輸速率之平衡對發光有非常大的影響,因此許多研究利用多層元件來平衡電荷傳輸以達到高效率發光。傳統多層元件大部分以蒸鍍來製備,但蒸鍍有許多限制,如需要在高溫下操作,且製備麻煩、成本高,然而熱交聯可使分子具有良好溶劑阻抗性,使多層元件可以旋轉塗佈方式製備。 本研究利用Wittig反應合成具有末端雙鍵之三苯胺芴化合物(FTV)作為熱交聯電洞傳輸層材料,探討FTV之熱性質、光學性質、溶劑阻抗性質,電化學性質、成膜表面性質與元件性質。FTV具有高熱裂解溫度(Td = 478 oC),將FTV進行熱處理(160 oC,30分鐘)產生熱交聯,具有良好的溶劑阻抗性。薄膜態最大UV/Vis吸收和螢光光譜(PL)放光在429 nm和485 nm。FTV分子具有三苯胺基團,有效提升其HOMO能階(-5.2 eV)及LUMO能階(-2.63 eV)。FTV以旋轉塗佈的方式製備薄膜,經過熱交聯FTV薄膜表面粗糙度(RMS roughness = 1.09 nm)低於未熱交聯的FTV薄膜表面粗糙度(RMS roughness = 1.94 nm)。元件方面探討FTV 當電洞傳輸層對元件效能有何差異,元件結構為[ITO/PEDOT:PSS/cured FTV/MEH-PPV/Ca(50 nm)/Al( 100 nm)]。沒有電洞傳輸層之元件最大亮度為1806 cd/m2及最大電流效率為0.27 cd/A,色度座標為(0.58,0.41),而有電洞傳輸層之元件最大亮度為2632 cd/m2及最大電流效率為0.32 cd/A,色度座標為(0.59,0.41),最大亮度及效率皆有提升。研究結果顯示,熱交聯FTV除了幫助電洞傳輸改善元件效率,且可以旋轉塗佈方式成膜,為製備多層元件時,電洞傳輸材料的選擇之一。

English Abstract

In this study, a thermally cross-linking hole-transporting material containing terminal vinyl group and triphenylamine (FTV) was synthesized via Witting reaction. The characteristics of FTV were analyzed by 1H-NMR, elemental analysis, DSC, TGA, optical spectra, cyclic voltammetry, and AFM. The FTV exhibited good thermal stability with 5% weight loss temperature thermal decomposition above 478 oC in nitrogen atmosphere. The FTV is readily cross-linked via vinyl groups by heating at 160 oC for 30 min to obtain homogeneous film with excellent solvent resistance. The HOMO levels of FTV (-5.2 eV) is closed to that of ITO/PEDOT:PSS (-5.2 eV), facilitating the injection and transport of holes. To demonstrate the application of the cured FTV as hole-transporting layer, multiple-layer PLED with a configuration of ITO/PEDOT:PSS/cured FTV/MEH-PPV/Ca(50 nm)/Al(100 nm) was fabricated to investigate optoelectronic characteristics. The maximum luminance and luminance efficiency of device with cured FTV as hole-transporting layer device are 2632cd/m2 and 0.32cd/A respectively, better than the performance of device without cured FTV(1806 cd/m2,0.27 cd/A). Current results demonstrate that the thermally cross-linkable FTV not only improved device efficiency but also prepared by spin-coating. It is promising hole-transporting material applicable for the fabrication of multilayer PLEDs.

Topic Category 工學院 > 化學工程學系
工程學 > 化學工業
Reference
  1. (2) Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    連結:
  2. (7) 陳金鑫,黃孝文 有機電激發光材料與元件; 五南, 2005年.
    連結:
  3. (9) Dresselhaus, M. S., Dresselhaus, G. Adv. Phys 1981, 30, 139.
    連結:
  4. (16) Segura, J. L. Acta Polymerica 1998, 49, 319.
    連結:
  5. (17) Mishra, K. Appl. Phy. Lett. 1996, 68, 3281.
    連結:
  6. (18) Heeger, A. J. J. Phys. Chem. B 2001, 105, 8475.
    連結:
  7. (19) Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
    連結:
  8. (25) Lin, C.-Y.; Lin, Y.-C.; Hung, W.-Y.; Wong, K.-T.; Kwong, R. C.; Xia, S. C.; Chen, Y.-H.; Wu, C.-I. J. Mater. Chem. 2009, 19, 3618.
    連結:
  9. (26) Rusling, J. F.; Suib, S. L. Adv.Mater.s 1994, 6, 922.
    連結:
  10. (1) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
  11. (3) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
  12. (4) 段啟聖 化工資訊雜誌與商情 民國94年8月, 第26期, P.40.
  13. (5) 郭昭輝 塑膠資訊雜誌 民國91年10月.
  14. (6) Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of instrumental analysis; 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2007.
  15. (8) Lamola, A. A.; Turro, N. J.; Leermakers, P. A.; Weissberger, A. Energy transfer and organic photochemistry; Interscience Publishers: New York,, 1969.
  16. (10) 黃孝文,陳雲 化工資訊月刊 2001, 第15卷第3期, P.8.
  17. (11) 葉昆明,陳雲 科學發展 2005年1月, 第385期, P.58.
  18. (12) 陳信宏,陳雲 中工高雄會刊 2006年, 第3期, P.72.
  19. (13) 楊素華 光訊雜誌 2002年10月, 第98期, P.29.
  20. (14) Wohlgenannt, M.; Tandon, K.; Mazumdar, S.; Ramasesha, S.; Vardeny, Z. V. Nature 2001, 409, 494.
  21. (15) 陳金鑫 光訊雜誌 民86年4月, 第65期, P.12.
  22. (20) Li, J.; Ma, C.; Tang, J.; Lee, C.-S.; Lee, S. Chem. Mater. 2005, 17, 615.
  23. (21) Tong, Q.-X.; Lai, S.-L.; Chan, M.-Y.; Lai, K.-H.; Tang, J.-X.; Kwong, H.-L.; Lee, C.-S.; Lee, S.-T. Chem. Mater. 2007, 19, 5851.
  24. (22) Yang, Z.; Xu, B.; He, J.; Xue, L.; Guo, Q.; Xia, H.; Tian, W. Organic Electronics 2009, 10, 954.
  25. (23) Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K. Y. Macromolecules 2008, 41, 9570.
  26. (24) Paul, G. K.; Mwaura, J.; Argun, A. A.; Taranekar, P.; Reynolds, J. R. Macromolecules 2006, 39, 7789.
  27. (27) Meng, H.; Chen, Z.-K.; Yu, W.-L.; Pei, J.; Liu, X.-L.; Lai, Y.-H.; Huang, W. Synth.Met.1999, 100, 297.
  28. (28) Chiniwalla, P.; Bai, Y.; Elce, E.; Shick, R.; McDougall, W. C.; Allen, S. A. B.; Kohl, P. A. Journal of Applied Polymer Science 2003, 89, 568.
  29. (29) Zhu Mei Jia Taibei jing ji wen hua dai biao chu ge ke xue zu fa xing: Washington, DC, p v.
  30. (30) Niu, Y. H.; Liu, M. S.; Ka, J. W.; Bardeker, J.; Zin, M. T.; Schofield, R.; Chi, Y.; Jen, A. K. Y. Adv. Mater.2007, 19, 300.
  31. (31) Huang, F.; Cheng, Y.-J.; Zhang, Y.; Liu, M. S.; Jen, A. K. Y. J. Mate. Chem. 2008, 18, 4495.