Title

利用無人載具進行俯衝空投之研究

Translated Titles

A Study of Diving-Airdrop of Unmanned Aerial Vehicle

Authors

吳嘉彬

Key Words

無人飛機 ; 硬體迴路模擬 ; 空投 ; Unmanned aerial vehicle (UAV) ; Hardware-in-the-loop (HIL) ; Airdrop

PublicationName

成功大學航空太空工程學系學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

詹劭勳

Content Language

英文

Chinese Abstract

本研究的目的是利用無人飛機進行俯衝空投任務,尤其是在一些危險的情形下或人力難以到達的地方。而空投有許多實際應用的例子,例如在一般民間使用、軍事應用或者是人道救援行動等等,我們可以利用無人飛機執行空投,以減少人力以及資源的消耗。而本研究除了研究俯衝空投外,也做了平飛空投來做比較。為了簡化拋投物對實驗結果的影響,我們盡量選擇均質、表面光滑且重量大約一致的撞球作為本實驗的拋投物。此外,在實驗的過程中,我們忽略側向力在撞球的作用,所以我們可以把俯衝空投的運動從3D簡化成2D的拋體運動。而本論文是採用飛機重心為體座標系統原點來分析拋體運動,其中X方向受到阻力的影響而Z方向受到重力的影響。為了可以執行俯衝空投實驗,我們重新整理了黑面琵鷺號無人飛機 (Spoonbill-100) 。在硬體部分,我們將航電系統更新以及將二行程木精引擎更換成二行程汽油引擎。此外設計空投箱,以方便掛載空投物體。在軟體部分則是建立硬體迴路模擬環境並設計可以控制速度、高度以及航向的空投控制器,而控制器是基於模糊控制設計而成的。經由航電裡的電腦計算出拋投物在空投過程中X方向前進距離,然後搭配上GPS資料的定位找出黑面琵鷺號無人飛機與目標點的距離,來判斷出適合的空投時機來完成空投任務。最後我們比較硬體迴路模擬以及實驗的結果,用來分析並探討無人飛行載具進行空投任務的可行性。

English Abstract

The purpose of this study is the use of an unmanned aerial vehicle to conduct diving-airdrop missions, especially in dangerous situations or terrains that are difficult for humans to work in. There are many examples of practical applications of airdrops, such as in general civil use, military applications or humanitarian relief operations, and the use of unmanned aircraft to perform airdrops can reduce manpower and resource demands. This thesis both examines diving-airdrops and conducts actual airdrops in level flight for comparison purposes. In order to simplify the impact of the payload on the experimental results, we choose an object with a smooth and homogeneous surface, a billiard ball as our experimental payload. Furthermore, we ignore the effects of the lateral force on the billiard ball during the experiment, so we can simplify the 3D projectile motion to 2D projectile motion. This thesis uses the center of gravity (C.G.) of the aircraft as the origin of the body coordinate system, in which resistance affects the projectile motion in the X-axis direction and gravity affects it in the Z-axis direction. We modify the Spoonbill unmanned aerial vehicle (Spoonbill-100) to perform the diving-drop experiment. For hardware, we update the avionics systems as well as replace the two-stoke glow engine with a two-stoke gasoline engine. For convenience, we design an airdrop box to carry the payload. For software, we establish a hardware-in-the-loop simulation environment and design a controller that can control the velocity, altitude and heading, and the controller is based on the principles of fuzzy control. The computer uses the air data to calculate the throw distance in the X-axis direction during the airdrop, and applies GPS to identify the position of the Spoonbill-100 unmanned aerial vehicle and the distance between this and the target. Therefore, the computer can determine the appropriate timing to complete the airdrop mission. Finally, we compare the results of the hardware-in-the-loop simulation and experiments to analyze and discuss the feasibility of using an unmanned aerial vehicle to conduct airdrop missions, as proposed in the current work.

Topic Category 工學院 > 航空太空工程學系
工程學 > 交通運輸工程
Reference
  1. 2. Cheng, Y. S. (2009) A Study On Airdrop Applicability Of Unmanned Aerial Vehicle, National Cheng Kung University, Tainan, Taiwan.
    連結:
  2. 3. Lee, C. S., Chan, W. L., Jan, S. S., and Hsiao, F. B., “A Linear-Quadratic-Gaussian Approach for Automatic Flight Control of Fixed-wing Unmanned Air Vehicles, Aeronautical Journal, Vol. 115, No. 1163, January 2011, pp. 29-41.
    連結:
  3. 5. Ding, Y. R., Lai, Y. C., Lin, C. H., Teng, Y., Huang, Y. H., Chen, S. W., and Hsiao,F. B., “The Development of the Fuzzy Logic Navigation and Control System for a Small UAV, 2010 AASRC Conference, Taoyuan, Taiwan R.O.C., 4 December 2010.
    連結:
  4. 7. Chang-Chien C. L. (2013) A Study of Airdrop Application on Unmanned Aerial Vehicle, National Cheng Kung University, Tainan, Taiwan.
    連結:
  5. 8. Boura, D., Hajicek, D., Semke, W., “Automated Air Drop System for Search and Rescue Applications Utilizing Unmanned Aircraft Systems”, Infotech@Aerospace, St. Louis, Missouri, 29-31 March 2011.
    連結:
  6. 1. Hsiao, F. B., Lai, Y. C., Tenn, H. K., Hsieh, S. Y., Chen, C. C., Chan, W. L., “The Development of an Unmanned Aerial Vehicle System with Surveillance, Watch, Autonomous Flight and Navigation Capability, Proceedings of the 21st Bristol UAV Systems Conference, Bristol, U. K., 3-5 April 2006.
  7. 4. Ding, Y. R., Liu, Y. C., Lin, C. H., Tseng, L. C., Teng, Y., and Hsiao, F. B., “The Design of Small UAV with Formation Flight Capability, 2009 AASRC/CSCA Joint Conference, Taipei, Taiwan R.O.C., 12 December 2009.
  8. 6. Ding, Y. R., Chen, Y. H., Sun, C. H., and Hsiao, F. B., “The implementation of autonomous formation flight capability to a small unmanned aerial vehicle system based on fuzzy logic control”, Journal of Aeronautics, Astronautics and Aviation, Vol. 43, No. 4, pp. 301-312, 2011.
  9. 9. Ding, Y. R., Chen, Y. H., Sun, C. H., and Hsiao, F. B., “The implementation of autonomous formation flight capability to a small unmanned aerial vehicle system based on fuzzy logic control”, Journal of Aeronautics, Astronautics and Aviation, Vol. 43, No. 4, pp. 301-312, 2011Cai G. W., Chen B. M., Lee T. H., Unmanned Rotorcraft Systems (1st ed), Berlin: Springer Science & Business Media
  10. 10. Stevens B. L., Lewis F. L., Aircraft Control And Simulation (2nd ed) Hoboken, New Jersey: John Wiley & Sons, Inc.
  11. 11. Air density calculator, from website http://www.denysschen.com/catalogue/density.aspx
  12. 12. Crowe C. T., Elger D. F., Williams B. C., Roberson J. A., Engineering fluid mechanics (9th ed), Hoboken, New Jersey: John Wiley & Sons, Inc.
  13. 13. The research of drag of a sphere by NASA, from website http://www.grc.nasa.gov/WWW/k-12/airplane/dragsphere.html