Title

燃料電池不銹鋼雙極板之成型性與接觸阻抗研究

Translated Titles

Study on Formability and Contact Resistance of Stainless Steel Bipolar Plate for PEMFC

DOI

10.6844/NCKU.2015.01134

Authors

洪舜浩

Key Words

燃料電池 ; 質子交換膜 ; 不銹鋼雙極板 ; 沖壓 ; 接觸阻抗 ; Fuel Cell ; Bipolar Plates ; Contact Resistance ; Polymer Electrolyte Membrane Fuel Cell

PublicationName

成功大學航空太空工程學系學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

賴維祥

Content Language

繁體中文

Chinese Abstract

近年來在燃料電池中,低成本、質輕的金屬雙極板被廣泛的探討,雖然金屬雙極板仍然有許多困難,但各研究也致力於在以金屬雙極板替代石墨雙極板的議題上。本研究旨在針對雙極板的沖壓成型參數進行成型性的有限元素摸擬分析並探討。模擬中分別改變不同的流道尺寸及沖壓參數,經由有限元素軟體LS-DYNA求解分析,在變薄率與回彈量間取得一個最佳值,並觀察這些參數對兩者的影響程度。接著測試當改變不同鈑材與鍍膜時,金屬雙極板之接觸阻抗與組裝成單電池後性能的變化。 模擬中將改變不同的流道參數包括:流道深度、模具倒圓角、拔模角,而沖壓參數則是探討沖壓速度以及壓料板之壓力變化。流道參數的改變對變薄率與回彈量的影響會形成相反的趨勢,且加裝壓料板後在成型性上可以大大的改善。實驗中所量測得的接觸阻抗大小由高至低分別為不銹鋼SS304 > SS316L > 鍍金SS304 > 碳板。接觸阻抗與組裝的壓力有非常大的關係,增加組裝壓力不但可以降低接觸阻抗,亦可以改善回彈所帶來之影響。

English Abstract

Recently, metallic bipolar plates (MBP) have been studied for the characteristics of low cost and light weighted. Even though there are still some problems remaining in MBPs, we still try to substitute carbon bipolar plate to metallic bipolar plate in proton exchange membrane fuel cell (PEMFC). The goal of this study is to simulate the stamping process and to find out the effect to thinning rate and springback by changing the size parameters of the flow channel and the conditions of stamping process through simulation results derived by the finite element analysis of LS-DYNA. The base material of the bipolar plate is changed and the contact resistances of the bipolar plates, including stainless steel SS304, SS316L and gold coated SS304 are compared. The simulation results of LS-DYNA indicate that as the thinning rate of the bipolar plate increases, the corresponding springback decreases. By adding blank holder in the stamping process will obviously reduce the springback on the bipolar plate. It is found that the compaction force applied on the stack affects the contact resistance. If the compaction force increases, the contact resistance of the bipolar plate will decrease in all materials of the study.

Topic Category 工學院 > 航空太空工程學系
工程學 > 交通運輸工程
Reference
  1. [3] Larminie, J. and Dicks, A. Fuel cell systems explained, John Wiley & Sons Ltd, 2003.
    連結:
  2. [5] Mehta, Viral, Cooper, Joyce Smith, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, 2003;114:32-53.
    連結:
  3. [6] Li, X., Sabir, I., “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, 2005;30:359-71.
    連結:
  4. [7] Lin, C. K., Kang, C. G., “Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane (PEM) fuel cells,” International Journal of Hydrogen Energy, 2012;37:1661-76.
    連結:
  5. [8] Reza, Taherian, “A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection,” Journal of Power Sources, 2014;265:370-390.
    連結:
  6. [9] Philip, L. Hentall, Barry, Lakeman J., Gary, O. Mepsted, L. Adcock, Paul, M. Moore Jon, “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Sources, 1999;80:235-41.
    連結:
  7. [10] Davies, D. P., Adcock, P. L., Rowen, M. Turpin, S. J., “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, 2000;30:101-5.
    連結:
  8. [11] Nikiforov, A. V., Petrushina, I.M., Christensen, E., Tomás-García, A.L., Bjerrum, N.J., “Corrosion behaviour of construction materials for high temperature steam electrolysers,” International Journal of Hydrogen Energy, 2011;36:111-119.
    連結:
  9. [12] Program U.S. Department of Energy Fuel Cell Technologies. Pathways to Commercial Success : Technologies and Products Supported by the Fuel Cell Technologies Program, 2012.
    連結:
  10. [13] Wang, Heli, Sweikart, Mary Ann, Turner, John A., “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, 2003;115:243-251.
    連結:
  11. [14] Wind, J., Späh, R., Kaiser, W., Böhm, G., “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, 2002;105:256-260.
    連結:
  12. [15] Turan, Cabir, Cora, Ömer Necati, Koç, Muammer, “Investigation of the effects of process sequence on the contact resistance characteristics of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, 2013;243:925-934.
    連結:
  13. [16] Haruki, Tsuchiya, Osamu, Kobayashi, “Mass production cost of PEM fuel cell by learning curve,” International Journal of Hydrogen Energy, 2004;29:985-990.
    連結:
  14. [18] Feng, Kai, Cai, Xun, Sun, Hailin, Li, Zhuguo, Chu, Paul K., “Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells,” Diamond & Related Materials, 2010;19:1354-1361.
    連結:
  15. [19] Peng, Linfa, Yi, Peiyun, Lai, Xinmin, “Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, 2014;39:21127-21153.
    連結:
  16. [20] Qiu, Diankai, Yi, Peiyun, Peng, Linfa, Lai, Xinmin, “Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, 2013;38:6762-6772.
    連結:
  17. [21] Mahabunphachai, Sasawat, Cora, Ömer Necati, Koç, Muammer, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates,” Journal of Power Sources, 2010;195:5269-5277.
    連結:
  18. [22] Turan, Cabir, Cora, Ömer Necati, Koç, Muammer, “Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells,” International Journal of Hydrogen Energy, 2011;36:12370-12380.
    連結:
  19. [24] Peker, Mevlut Fatih, Cora, Ömer Necati, Koç, Muammer, “Investigations on the variation of corrosion and contact resistance characteristics of metallic bipolar plates manufactured under long-run conditions,” International Journal of Hydrogen Energy, 2011;36:15427-15436.
    連結:
  20. [25] 蕭逸宏,應用田口法於燃料電池金屬雙極板沖壓成形研究, 國立成功大學航空太空工程學系碩士論文, 2014.
    連結:
  21. [26] Toyoaki, Matsuura, Megumi, Kato, Michio, Hori, “Study on metallic bipolar plate for proton exchange membrane fuel cell,” Journal of Power Sources, 2006;161:74-78.
    連結:
  22. [27] Montanini, R., Squadrito, G., Giacoppo, G., “Measurement of the clamping pressure distribution in polymer electrolyte fuel cells using piezoresistive sensor arrays and digital image correlation techniques,” Journal of Power Sources, 2011;196:8484-8493.
    連結:
  23. [28] 林育昇,界面壓力對質子交換膜燃料電池堆之性能影響, 國立成功大學航空太空工程學系碩士論文, 2008.
    連結:
  24. [29] Jin, Chul Kyu, Koo, Ja Yoon, Kang, Chung Gil, “Fabrication of stainless steel bipolar plates for fuel cells using dynamic loads for the stamping process and performance evaluation of a single cell,” International Journal of Hydrogen Energy, 2014:1-9.
    連結:
  25. [30] Yao, Yuntao Song Damao, Wu, Songtao, Weng, Peide, “Spring-back simulation of sheet metal forming for the HT-7U vacuum vessel,” Fusion Engineering and Design, 2003;69:361-5.
    連結:
  26. [31] Ye, Wang, Qiyu, Shen, Yuguo, Wang, Yongqing, Zhang, “Research on applying one-step simulation to blank design in sheet metal forming,” Journal of Materials Processing Technology, 2002;120:111-4.
    連結:
  27. [32] Chow, C. L., Tai, W. H., Chu, Edmund, “Computer simulation of sheet metal forming based on damage mechanics approach,” Journal of Materials Processing Technology, 2003;139:553-8.
    連結:
  28. [33] 陳震宇,溫度與溼度對PBI/H3PO4燃料電池特性影響之研究, 國立成功大學航空太空工程學系碩士論文, 2010.
    連結:
  29. [39] Cha, Suk Won, O’Hayre, Ryan, Park, Yong-I1, Prinz, F.B., “Electrochemical impedance investigation of flooding in micro-flow channels for proton exchange membrane fuel cells,” Journal of Power Sources, 2006;161:138-142.
    連結:
  30. [40] André, Johan, Antoni, Laurent, Petit, Jean-Pierre, Vito, Eric De, Montani, Alexandre, “Electrical contact resistance between stainless steel bipolar plate and carbon felt in PEFC: A comprehensive study,” International Journal of Hydrogen Energy, 2009;34:3125-3133
    連結:
  31. [41] 陳君奇, "一氧化碳及氫氣濃度對燃料電池影響之研究", 國立成功大學航空太空工程學系碩士論文, 2000.
    連結:
  32. [42] Netwall, Christopher J., Gould, Benjamin D., Rodgers, Joseph A., Nasello, Nicholas J., Swider-Lyons, Karen E., “Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates,” Journal of Power Sources, 2013:227;137-144.
    連結:
  33. [43] Owejan, J.P., Trabold, T.A., Jacobson, D.L., Arif, M., Kandlikar, S.G., “Effects of flow field and diffusion layer properties on water accumulation in a PEM fuel cell,” International Journal Hydrogen Energy, 2007;32:4489-4502.
    連結:
  34. [44] Hu, Qinghui, Zhang, Dongming, Fu, Hao, Huang, KaiKai, “Investigation of stamping process of metallic bipolar plates in PEM fuel cell-Numerical simulation and experiments,” International Journal of Hydrogen Energy, 2014;39:13770-13776.
    連結:
  35. [1] http://www.toyota.com/mirai/fcv.html.2014
  36. [2] http://www.nrl.navy.mil/lasr/content/ion-tiger-fuel-cell-powered-uav.2013
  37. [4] Lamm, Wolf Vielstich Arnold, Gasteiger, Hubert A. Handbook of fuel cells: fundamentals, technology, applications, John Willy & Sons Ltd, 2003.
  38. [17] Yuan, Xiao Zi, Wang, Haijiang, Zhang, Jiujun, Wilkinson, David P., “Bipolar Plates for PEM Fuel Cells - From Materials to Processing,” Journal of New Materials for Electrochemical Systems, 2005;8;257-267.
  39. [23] Wilkerson, J. Shang L., Hatkevich, S., Daehn, G.S., “Commercialization of Fuel Cell Bipolar Plate Manufacturing by Electromagnetic Forming,” 4th International Conference on High Speed Forming, 2010
  40. [34] EG&G Technical Services, I., Fuel Cell Handbook (Seventh Edition). 2004
  41. [35] Stanislav, Németh Anna Šúňová, Emil, Evin, CSc, “Forming limit diagrams as an importnant indicator of progressive high-strength steel sheets forming,” Transfer inovácií, 2013:17-20.
  42. [36]董福清,應用微影方法於網格微細化之板金可成形性研究, 國立成功大學航空太空工程學系碩士論文, 2000.
  43. [37] Hallquist, John O. LS-DYNA® THEORY MANUAL. 7374 Las Positas Road Livermore, California 94551: Livermore Software Technology Corporation; 2006
  44. [38] https://contact.fujifilm.com/products/prescale/guide/. 2015
Times Cited
  1. 黃植葳(2016)。燃料電池不銹鋼雙極板之成型性與流道設計。成功大學航空太空工程學系學位論文。2016。1-97。