Title

分子束磊晶成長傾斜氮化銦奈米線陣列及其奈米壓電、發電性質之研究

Translated Titles

Obliquely Aligned InN Nanowire Array Grown by Molecular Beam Epitaxy for Nanopiezotronics and Nanogenerators

Authors

古乃任

Key Words

分子束磊晶 ; 氮化銦奈米線 ; 奈米發電機 ; 奈米壓電子學 ; Molecular beam epitaxy ; InN nanowires ; Nanogenerator ; Nanopiezotronics

PublicationName

成功大學材料科學及工程學系學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

博士

Advisor

劉全璞

Content Language

英文

Chinese Abstract

本研究利用分子束磊晶以遮蔽效應成長傾斜氮化銦單晶奈米陣列,並運用於製作奈米壓電元件及奈米發電機,根據文獻中所提到的結果,奈米線彎曲的變形量與其產生的壓電勢為正比的關係,傾斜的奈米結構在相同的垂直應力作用力下會產生更多的晶格形變,如此便可以形成更高的壓電電場,預期在奈米發電應用結構上,傾斜奈米線陣列將優於垂直成長的奈米線。此外,傾斜奈米線陣列運用於奈米壓電元件上也具其優勢,在結構上可容許較大程度的變形,作為壓力感測器時將具有更好的靈敏度及耐用性。 首先利用分子束磊晶成長傾斜氮化銦奈米柱陣列,探討不同結晶平面之二維電子氣濃度對於奈米柱發光性質之影響,傾斜氮化銦奈米柱由頂端(0002) c-平面及六個(1-102)r-面側邊所構成,在低溫光致螢光光譜上發現,除由奈米柱核心產生近能隙(~0.7 eV)之發光能量外,在更高能量(0.86 及0.91 eV)的波段可觀察分別由c-及r-平面造成的強度更強的發光峰,進一步由時間解析光致螢光光譜上發現,此二平面表面結構的差異造成表面能帶結構的彎曲程度不同,而造成此二高能量的發光峰能量及強度上的差異。 在壓電電子學的運用中,實驗上利用導電式原子力顯微鏡量測氮化銦奈米柱結晶學平面與應力應變對於電壓電流特性之影響。在奈米壓電行為上,蕭特基能障高度會隨著施加的應力增加,因此在固定偏壓下電流逐漸截止,而在高偏壓下累積於氮化銦奈米柱表面的電子,穿遂效應會造成電流急劇上昇。故此傾斜氮化銦奈米柱中的電子傳輸行為,可藉由外界的機械能調控;而以氮化銦奈米材料作為壓電元件時,存在於其結晶表面的二維電子氣將會其電性具有很大的影響。 利用傾斜氮化銦奈米線陣列製作奈米發電機,藉由氮化銦材料之壓電及半導體的耦合行為,可將外在環境中的微小機械能轉換為直流電能輸出, 運用導電式原子力顯微鏡探針偏折奈米線時,最大可量測得~205.6 nA的平均電流輸出。為了使奈米壓電發電符合成本效益,在單位體積內提升InN應變量能大大提升壓電發電之輸出功率,藉由多段式成長螺旋式或鋸齒狀新穎InN奈米柱,達到連續且穩定的電源,未來將發展更簡易製作傾斜奈米線陣列的製程研發並將開始上述元件的封裝製程研發及評估量測其效能,相信其材料與結構上的優勢將具有極大的潛力。

English Abstract

This dissertation proposes an obliquely aligned InN nanowire (NW) array to maximize NW deformation in nanopiezotronics and nanogenerators. The proposed nanogenerator consists of obliquely aligned InN NWs that are deposited by glancing angle deposition with molecular beam epitaxy. This configuration maximizes the bending deformation produced by a normal force, which is limited by the empty space between adjacent NWs and the mechanical strength of the NWs. Thus, this configuration enhances the piezopotential and output power. In the first part of the dissertation, the luminescence of InN NWs is demonstrated to be surface-dependent by precisely controlling the different facets exposed at the surface of an obliquely aligned NW array, as carrier recombination interacts with different material surfaces. In addition to the bulk near-band-edge emission at approximately 0.7 eV from the inner core region, two more peaks with even stronger luminescence intensity appear at 0.86 and 0.91 eV, ascribed to the top-flat c- and the semipolar r-planes, respectively. This surface dependence luminescence phenomenon allows for the development of novel optoelectronic devices. The surface-dependent piezotronic current-voltage (I-V) characteristics of the InN NW array with exposed c- and r-planes were studied by conductive atomic force microscopy. The effects of the piezopotential, created in the InN NW under strain, and the surface quantum states on the transport behavior of charge carriers in different crystal planes of the InN NW were investigated. Regarding the piezotronic properties under applied force, the Schottky barrier height increases in conjunction with the deflection force with high current density at large biases because of tunneling. The strain-induced piezopotential can thus tune the transport process of the charge carriers inside the InN NW over a range larger than that in ZnO. The surface electron accumulation layer is demonstrated to modulate the piezopotential-dependent carrier transport at the metal/InN interfaces. This layer is an important factor in the design of InN-based piezotronic devices and nanogenerators. The output power can be harvested simply by exerting a normal force on a nanogenerator to create piezopotential. The conversion mechanism relies on the coupling between the piezoelectric and semiconducting properties of InN by creating strain fields to drive the charge flow across the NWs. Nanogenerators built using InN NW arrays produce an average output direct current of 205.6 nA by modulating the Schottky barrier height under the influence of the surface electron accumulation layer. The fourth part of this study presents the optimal geometrical design of inertial vibration direct current piezoelectric nanogenerators based on obliquely aligned InN nanowire NW arrays, which exhibited an optimized oblique angle of approximately 58°. The devices have potential applications as sensitive strain sensors and energy harvesting devices capable of gathering energy from mechanical vibrations. The maximal output power density of the nanogenerators is estimated to be 2.9 nW/cm2, which is 3-12 times larger than that of vertically aligned ZnO NW direct current nanogenerators. A serial connection of two nanogenerators exhibited a linear increase in output power, offering enormous potential for the creation of self-powered sustainable nanosystems that use natural ambient energy sources.

Topic Category 工學院 > 材料科學及工程學系
工程學 > 工程學總論
Reference
  1. (4) Ambacher, O., J. Phys. D: Appl. Phys. 1998, 31 (20), 2653-2710.
    連結:
  2. (6) Wang, Z. L., Adv. Mater. 2007, 19 (6), 889-892.
    連結:
  3. (17) Lao, C. S.; Kuang, Q.; Wang, Z. L.; Park, M.-C.; Deng, Y., Appl. Phys. Lett. 2007, 90 (26), 262107.
    連結:
  4. (21) Lu, M. Y.; Song, J.; Lu, M. P.; Lee, C. Y.; Chen, L. J.; Wang, Z. L., ACS Nano 2009, 3 (2), 357-362.
    連結:
  5. (22) Lin, Y. F.; Song, J.; Ding, Y.; Lu, S. Y.; Wang, Z. L., Appl. Phys. Lett. 2008, 92 (2), 022105.
    連結:
  6. (24) Huang, C. T.; Song, J.; Lee, W. F.; Ding, Y.; Gao, Z.; Hao, Y.; Chen, L. J.; Wang, Z. L., J Am Chem Soc 2010, 132 (13), 4766-4771.
    連結:
  7. (25) Huang, C. T.; Song, J.; Tsai, C. M.; Lee, W. F.; Lien, D. H.; Gao, Z.; Hao, Y.; Chen, L. J.; Wang, Z. L., Adv Mater 2010, 22 (36), 4008-4013.
    連結:
  8. (26) Lieber, C. M., MRS Bull 2011, 36 (12), 1052-1063.
    連結:
  9. (31) Devan, R. S.; Patil, R. A.; Lin, J. H.; Ma, Y. R., Adv. Funct. Mater. 2012, 22 (16), 3326-3370.
    連結:
  10. (36) Calarco, R., Materials 2012, 5 (12), 2137-2150.
    連結:
  11. (38) Tansley, T. L.; Foley, C. P., J. Appl. Phys. 1986, 59 (9), 3241.
    連結:
  12. (45) Wakahara, A.; Yoshida, A., Appl. Phys. Lett. 1989, 54 (8), 709.
    連結:
  13. (49) PEARSON, W. B., A Handbook of LATTICE SPACINGS AND STRUCTURES OF METALS AND ALLOYS. 1967.
    連結:
  14. (55) Chisholm, J. A.; Lewis, D. W.; Bristowe, P. D., J. Phys.: Condens. Matter 1999, 11 (22), L235-L239.
    連結:
  15. (58) Inushima, T.; Mamutin, V. V.; Vekshin, V. A.; Ivanov, S. V.; Sakon, T.; Motokawa, M.; Ohoya, S., J. Cryst. Growth 2001, 227-228, 481-485.
    連結:
  16. (63) Bechstedt, F.; Fuchs, F.; Furthmüller, J., Phys. Status Solidi (a) 2010, 207 (5), 1041-1053.
    連結:
  17. (65) Tansley, T. L.; Foley, C. P., Electron. Lett 1984, 20 (25-26), 1066.
    連結:
  18. (66) Jenkins, D.; Dow, J., Phys. Rev. B 1989, 39 (5), 3317-3329.
    連結:
  19. (71) Pan, Y.-C.; Lee, W.-H.; Shu, C.-K.; Lin, H.-C.; Chiang, C.-I.; Chang, H.; Lin, D.-S.; Lee, M.-C.; Chen, W.-K., Japanese Journal of Applied Physics 1999, 38 (Part 1, No. 2A), 645-648.
    連結:
  20. (80) Wu, C. L.; Lee, H. M.; Kuo, C. T.; Chen, C. H.; Gwo, S., Phys. Rev. Lett. 2008, 101 (10), 106803.
    連結:
  21. (81) Chang, Y. L.; Mi, Z. T.; Li, F., Adv. Funct. Mater. 2010, 20 (23), 4146-4151.
    連結:
  22. (94) Noborisaka, J.; Motohisa, J.; Hara, S.; Fukui, T., Appl. Phys. Lett. 2005, 87 (9), 093109.
    連結:
  23. (99) Dimakis, E.; Iliopoulos, E.; Tsagaraki, K.; Georgakilas, A., Phys. Status Solidi (a) 2006, 203 (7), 1686-1690.
    連結:
  24. (115) Araki, T.; Yamashita, S.; Yamaguchi, T.; Yoon, E.; Nanishi, Y., Phys. Status Solidi (a) 2012, 209 (3), 447-450.
    連結:
  25. (117) Songmuang, R.; Landré, O.; Daudin, B., Appl. Phys. Lett. 2007, 91 (25), 251902.
    連結:
  26. (118) Plante, M. C.; LaPierre, R. R., J. Cryst. Growth 2008, 310 (2), 356-363.
    連結:
  27. (121) Panish, M. B., Science 1980, 208 (4446), 916-22.
    連結:
  28. (134) Wei, P. C.; Chattopadhyay, S.; Lin, F. S.; Hsu, C. M.; Jou, S.; Chen, J. T.; Huang, P. J.; Hsu, H. C.; Shih, H. C.; Chen, K. H.; Chen, L. C., Opt Express 2009, 17 (14), 11690-11697.
    連結:
  29. (142) Wang, Z. L., Adv. Funct. Mater. 2008, 18 (22), 3553-3567.
    連結:
  30. (150) Wang, K. R.; Lin, S. J.; Tu, L. W.; Chen, M.; Chen, Q. Y.; Chen, T. H.; Chen, M. L.; Seo, H. W.; Tai, N. H.; Chang, S. C.; Lo, I.; Wang, D. P.; Chu, W. K., Appl. Phys. Lett. 2008, 92 (12), 123105.
    連結:
  31. (152) Tsui, D. C., Phys. Rev. B 1971, 4 (12), 4438-4449.
    連結:
  32. (157) Chang, C.; Tran, V. H.; Wang, J.; Fuh, Y. K.; Lin, L., Nano Lett 2010, 10 (2), 726-731.
    連結:
  33. (158) Park, K. I.; Xu, S.; Liu, Y.; Hwang, G. T.; Kang, S. J. L.; Wang, Z. L.; Lee, K. J., Nano Lett. 2010, 10 (12), 4939-4943.
    連結:
  34. (162) Zhu, J.; Wang, L.; Zhang, S.; Wang, H.; Zhao, D.; Zhu, J.; Liu, Z.; Jiang, D.; Yang, H., J. Appl. Phys. 2010, 108 (7), 074302.
    連結:
  35. (163) Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W., Appl. Phys. Lett. 2007, 90 (6), 063110.
    連結:
  36. (164) Sirohi, J.; Chopra, I., J. Intell. Mater. Syst. Struct. 2000, 11 (4), 246-257.
    連結:
  37. (173) Wang, Z. L., MRS Bull. 2012, 37 (09), 814-827.
    連結:
  38. (1) Matsuoka, T.; Okamoto, H.; Nakao, M.; Harima, H.; Kurimoto, E., Appl. Phys. Lett. 2002, 81 (7), 1246.
  39. (2) Strite, S., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1992, 10 (4), 1237.
  40. (3) Monemar, B., Journal of Materials Science: Materials in Electronics 1999, 10 (4), 227-254.
  41. (5) Davydov, V. Y.; Klochikhin, A. A., Semiconductors 2004, 38 (8), 861-898.
  42. (7) Zhang, Y.; Liu, Y.; Wang, Z. L., Adv Mater 2011, 23 (27), 3004-3013.
  43. (8) Wang, Z. L.; Song, J., Science 2006, 312 (5771), 242-246.
  44. (9) Wang, X.; Song, J.; Liu, J.; Wang, Z. L., Science 2007, 316 (5821), 102-105.
  45. (10) Qin, Y.; Wang, X.; Wang, Z. L., Nature 2008, 451 (7180), 809-813.
  46. (11) Song, J.; Zhou, J.; Wang, Z. L., Nano Lett 2006, 6 (8), 1656-1662.
  47. (12) Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. L., Nano Lett 2006, 6 (12), 2768-2772.
  48. (13) Liu, W.; Lee, M.; Ding, L.; Liu, J.; Wang, Z. L., Nano Lett 2010, 10 (8), 3084-3089.
  49. (14) He, J. H.; Hsin, C. L.; Liu, J.; Chen, L. J.; Wang, Z. L., Adv. Mater. 2007, 19 (6), 781-784.
  50. (15) Wu, W.; Wei, Y.; Wang, Z. L., Adv Mater 2010, 22 (42), 4711-4715.
  51. (16) Wu, W.; Wang, Z. L., Nano Lett 2011, 11 (7), 2779-2785.
  52. (18) Hu, Y.; Chang, Y.; Fei, P.; Snyder, R. L.; Wang, Z. L., ACS Nano 2010, 4 (2), 1234-1240.
  53. (19) Hu, Y.; Zhang, Y.; Chang, Y.; Snyder, R. L.; Wang, Z. L., ACS Nano 2010, 4 (7), 4220-4224.
  54. (20) Wang, Z. L., Journal of Physical Chemistry Letters 2010, 1 (9), 1388-1393.
  55. (23) Xu, X.; Potie, A.; Songmuang, R.; Lee, J. W.; Bercu, B.; Baron, T.; Salem, B.; Montes, L., Nanotechnology 2011, 22 (10), 105704.
  56. (27) Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M., Mater. Today 2006, 9 (10), 18-27.
  57. (28) Huang, Y.; Duan, X.; Lieber, C. M., Small 2005, 1 (1), 142-7.
  58. (29) Agrawal, R.; Espinosa, H. D., Nano Lett. 2011, 11 (2), 786-790.
  59. (30) Wang, X.; Song, J.; Zhang, F.; He, C.; Hu, Z.; Wang, Z., Adv Mater 2010, 22 (19), 2155-2158.
  60. (32) Hawkeye, M. M.; Brett, M. J., Journal of Vacuum Science & Technology A 2007, 25 (5), 1317-1335.
  61. (33) He, Y.; Wu, J.; Zhao, Y., Nano Lett 2007, 7 (5), 1369-75.
  62. (34) Kesapragada, S. V.; Victor, P.; Nalamasu, O.; Gall, D., Nano Lett 2006, 6 (4), 854-7.
  63. (35) Yang, S.; Lei, Y., Nanoscale 2011, 3 (7), 2768-82.
  64. (37) Wu, J. Q., J. Appl. Phys. 2009, 106 (1), 011101.
  65. (39) Yamamoto, A.; Tanaka, T.; Koide, K.; Hashimoto, A., Phys. Status Solidi (a) 2002, 194 (2), 510-514.
  66. (40) Wu, J.; Walukiewicz, W.; Yu, K. M.; Ager, J. W.; Haller, E. E.; Lu, H.; Schaff, W. J.; Saito, Y.; Nanishi, Y., Appl. Phys. Lett. 2002, 80 (21), 3967.
  67. (41) Sharma, T. K.; Towe, E., J. Appl. Phys. 2010, 107 (2), 024516.
  68. (42) Narukawa, Y.; Kawakami, Y.; Fujita, S.; Nakamura, S., Phys. Rev. B 1997, 55 (4), R1938-R1941.
  69. (43) Chin, V. W. L.; Tansley, T. L.; Osotchan, T., J. Appl. Phys. 1994, 75 (11), 7365.
  70. (44) Bellotti, E.; Doshi, B. K.; Brennan, K. F.; Albrecht, J. D.; Ruden, P. P., J. Appl. Phys. 1999, 85 (2), 916-923.
  71. (46) Davydov, V. Y.; Klochikhin, A. A.; Seisyan, R. P.; Emtsev, V. V.; Ivanov, S. V.; Bechstedt, F.; Furthmuller, J.; Harima, H.; Mudryi, A. V.; Aderhold, J.; Semchinova, O.; Graul, J., Physica Status Solidi B-Basic Solid State Physics 2002, 229 (3), R1-R3.
  72. (47) Bhuiyan, A. G.; Hashimoto, A.; Yamamoto, A., J. Appl. Phys. 2003, 94 (5), 2779-2808.
  73. (48) Bhattacharya, P.; Sharma, T. K.; Singh, S.; Ingale, A.; Kukreja, L. M., J. Cryst. Growth 2002, 236 (1-3), 5-9.
  74. (50) Van Camp, P.; Van Doren, V.; Devreese, J., Phys. Rev. B 1990, 41 (3), 1598-1602.
  75. (51) Kubota, K.; Kobayashi, Y.; Fujimoto, K., J. Appl. Phys. 1989, 66 (7), 2984.
  76. (52) Kim, K.; Lambrecht, W.; Segall, B., Phys. Rev. B 1996, 53 (24), 16310-16326.
  77. (53) Wright, A. F., J. Appl. Phys. 1997, 82 (6), 2833.
  78. (54) Marmalyuk, A. A.; Akchurin, R. K.; Gorbylev, V. A., Inorg. Mater. 1998, 34 (7), 691-694.
  79. (56) Bernardini, F.; Fiorentini, V.; Vanderbilt, D., Phys. Rev. B 1997, 56 (16), 10024-10027.
  80. (57) Wu, J.; Walukiewicz, W.; Shan, W.; Yu, K. M.; Ager, J. W.; Li, S. X.; Haller, E. E.; Lu, H.; Schaff, W. J., J. Appl. Phys. 2003, 94 (7), 4457-4460.
  81. (59) Davydov, V. Y.; Klochikhin, A. A.; Emtsev, V. V.; Ivanov, S. V.; Vekshin, V. V.; Bechstedt, F.; Furthmuller, J.; Harima, H.; Mudryi, A. V.; Hashimoto, A.; Yamamoto, A.; Aderhold, J.; Graul, J.; Haller, E. E., physica status solidi (b) 2002, 230 (2), R4-R6.
  82. (60) Davydov, V. Y.; Klochikhin, A. A.; Emtsev, V. V.; Kurdyukov, D. A.; Ivanov, S. V.; Vekshin, V. A.; Bechstedt, F.; Furthmuller, J.; Aderhold, J.; Graul, J.; Mudryi, A. V.; Harima, H.; Hashimoto, A.; Yamamoto, A.; Haller, E. E., physica status solidi (b) 2002, 234 (3), 787-795.
  83. (61) Lu, H.; Schaff, W. J.; Hwang, J.; Wu, H.; Yeo, W.; Pharkya, A.; Eastman, L. F., Appl. Phys. Lett. 2000, 77 (16), 2548.
  84. (62) Wu, J.; Walukiewicz, W.; Shan, W.; Yu, K. M.; Ager, J. W.; Haller, E. E.; Lu, H.; Schaff, W. J., Phys. Rev. B 2002, 66 (20), 201403.
  85. (64) Wu, J.; Walukiewicz, W.; Li, S. X.; Armitage, R.; Ho, J. C.; Weber, E. R.; Haller, E. E.; Lu, H.; Schaff, W. J.; Barcz, A.; Jakiela, R., Appl. Phys. Lett. 2004, 84 (15), 2805.
  86. (67) Yamamoto, A.; Murakami, Y.; Koide, K.; Adachi, M.; Hashimoto, A., physica status solidi (b) 2001, 228 (1), 5-8.
  87. (68) Stampfl, C.; Van de Walle, C.; Vogel, D.; Krüger, P.; Pollmann, J., Phys. Rev. B 2000, 61 (12), R7846-R7849.
  88. (69) Look, D. C.; Lu, H.; Schaff, W. J.; Jasinski, J.; Liliental-Weber, Z., Appl. Phys. Lett. 2002, 80 (2), 258.
  89. (70) Yamamoto, A.; Shin-ya, T.; Sugiura, T.; Hashimoto, A., J. Cryst. Growth 1998, 189-190, 461-465.
  90. (72) Yamaguchi, S.; Kariya, M.; Nitta, S.; Takeuchi, T.; Wetzel, C.; Amano, H.; Akasaki, I., J. Appl. Phys. 1999, 85 (11), 7682.
  91. (73) Higashiwaki, M.; Matsui, T., Japanese Journal of Applied Physics 2002, 41 (Part 2, No. 5B), L540-L542.
  92. (74) Lu, H.; Schaff, W. J.; Eastman, L. F.; Stutz, C. E., Appl. Phys. Lett. 2003, 82 (11), 1736.
  93. (75) Mahboob, I.; Veal, T. D.; McConville, C. F.; Lu, H.; Schaff, W. J., Phys. Rev. Lett. 2004, 92 (3), 036804.
  94. (76) King, P. D.; Veal, T. D.; McConville, C. F.; Zuniga-Perez, J.; Munoz-Sanjose, V.; Hopkinson, M.; Rienks, E. D.; Jensen, M. F.; Hofmann, P., Phys Rev Lett 2010, 104 (25), 256803.
  95. (77) Sze, S. M.; Ng, K. K., Physics of Semiconductor Devices. 3rd ed.; Wiley-Interscience: Hoboken, New Jersey, 2007.
  96. (78) Segura-Ruiz, J.; Molina-Sanchez, A.; Garro, N.; Garcia-Cristobal, A.; Cantarero, A.; Iikawa, F.; Denker, C.; Malindretos, J.; Rizzi, A., Phys. Rev. B 2010, 82 (12), 125319.
  97. (79) Segura-Ruiz, J.; Garro, N.; Cantarero, A.; Denker, C.; Malindretos, J.; Rizzi, A., Phys. Rev. B 2009, 79 (11), 115305.
  98. (82) Van de Walle, C. G.; Segev, D., J. Appl. Phys. 2007, 101 (8), 081704.
  99. (83) Lazic, S.; Gallardo, E.; Calleja, J. M.; Agullo-Rueda, F.; Grandal, J.; Sanchez-Garcia, M. A.; Calleja, E.; Luna, E.; Trampert, A., Phys. Rev. B 2007, 76 (20), 205319.
  100. (84) Werner, F.; Limbach, F.; Carsten, M.; Denker, C.; Malindretos, J.; Rizzi, A., Nano Lett 2009, 9 (4), 1567-1571.
  101. (85) Liu, J.; Cai, Z. H.; Koley, G., J. Appl. Phys. 2009, 106 (12), 124907.
  102. (86) Chang, C.-Y.; Chi, G.-C.; Wang, W.-M.; Chen, L.-C.; Chen, K.-H.; Ren, F.; Pearton, S. J., J. Electron. Mater. 2006, 35 (4), 738-743.
  103. (87) Richter, T.; Luth, H.; Schapers, T.; Meijers, R.; Jeganathan, K.; Estevez Hernandez, S.; Calarco, R.; Marso, M., Nanotechnology 2009, 20 (40), 405206.
  104. (88) Chang, C.-Y.; Chi, G.-C.; Wang, W.-M.; Chen, L.-C.; Chen, K.-H.; Ren, F.; Pearton, S. J., Appl. Phys. Lett. 2005, 87 (9), 093112.
  105. (89) Yin, S.; Sun, Z. Z.; Lu, J.; Wang, X. R., Appl. Phys. Lett. 2006, 88 (23), 233110.
  106. (90) King, P. D.; Veal, T. D.; McConville, C. F., J Phys Condens Matter 2009, 21 (17), 174201.
  107. (91) Wang, Z. L., Adv. Mater. 2009, 21 (13), 1311-1315.
  108. (92) Fan, H. J.; Werner, P.; Zacharias, M., Small 2006, 2 (6), 700-717.
  109. (93) Shen, C. H.; Chen, H. Y.; Lin, H. W.; Gwo, S.; Klochikhin, A. A.; Davydov, V. Y., Appl. Phys. Lett. 2006, 88 (25), 253104.
  110. (95) Lee, S. C.; Dawson, L. R.; Brueck, S. R. J.; Jiang, Y. B., J. Appl. Phys. 2005, 98 (11), 114312.
  111. (96) Koukitu, A.; Seki, H., Japanese Journal of Applied Physics 1997, 36 (Part 2, No. 6B), L750-L753.
  112. (97) Dimakis, E.; Iliopoulos, E.; Tsagaraki, K.; Kehagias, T.; Komninou, P.; Georgakilas, A., J. Appl. Phys. 2005, 97 (11), 113520.
  113. (98) Dimakis, E.; Iliopoulos, E.; Tsagaraki, K.; Georgakilas, A., Appl. Phys. Lett. 2005, 86 (13), 133104.
  114. (100) Debnath, R. K.; Meijers, R.; Richter, T.; Stoica, T.; Calarco, R.; Lüth, H., Appl. Phys. Lett. 2007, 90 (12), 123117.
  115. (101) Ambacher, O., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1996, 14 (6), 3532.
  116. (102) Koblmüller, G.; Gallinat, C. S.; Speck, J. S., J. Appl. Phys. 2007, 101 (8), 083516.
  117. (103) Gallinat, C. S.; Koblmüller, G.; Brown, J. S.; Speck, J. S., J. Appl. Phys. 2007, 102 (6), 064907.
  118. (104) Denker, C.; Malindretos, J.; Werner, F.; Limbach, F.; Schuhmann, H.; Niermann, T.; Seibt, M.; Rizzi, A., physica status solidi (c) 2008, 5 (6), 1706-1708.
  119. (105) Dimakis, E.; Konstantinidis, G.; Tsagaraki, K.; Adikimenakis, A.; Iliopoulos, E.; Georgakilas, A., Superlattices Microstruct. 2004, 36 (4-6), 497-507.
  120. (106) Stoica, T.; Meijers, R.; Calarco, R.; Richter, T.; Luth, H., J. Cryst. Growth 2006, 290 (1), 241-247.
  121. (107) Calleja, E.; Ristic, J.; Fernandez-Garrido, S.; Cerutti, L.; Sanchez-Garcia, M. A.; Grandal, J.; Trampert, A.; Jahn, U.; Sanchez, G.; Griol, A.; Sanchez, B., Physica Status Solidi B-Basic Solid State Physics 2007, 244 (8), 2816-2837.
  122. (108) Oliver, R. A.; Nörenberg, C.; Martin, M. G.; Castell, M. R.; Allers, L.; Briggs, G. A. D., Surf. Sci. 2003, 532-535, 806-810.
  123. (109) Zhao, S.; Fathololoumi, S.; Bevan, K. H.; Liu, D. P.; Kibria, M. G.; Li, Q.; Wang, G. T.; Guo, H.; Mi, Z., Nano Lett 2012, 12 (6), 2877-82.
  124. (110) Chang, Y. L.; Li, F.; Mi, Z., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2010, 28 (3), C3B7.
  125. (111) Chang, Y. L.; Li, F.; Fatehi, A.; Mi, Z., Nanotechnology 2009, 20 (34), 345203.
  126. (112) Simpkins, B. S.; Kansal, A. D.; Pehrsson, P. E., Cryst Growth Des 2010, 10 (9), 3887-3891.
  127. (113) Shi, S.-C.; Chen, C.-F.; Hsu, G.-M.; Hwang, J.-S.; Chattopadhyay, S.; Lan, Z.-H.; Chen, K.-H.; Chen, L.-C., Appl. Phys. Lett. 2005, 87 (20), 203103.
  128. (114) Grandal, J.; Sánchez-García, M. A.; Calleja, E.; Gallardo, E.; Calleja, J. M.; Luna, E.; Trampert, A.; Jahn, A., Appl. Phys. Lett. 2009, 94 (22), 221908.
  129. (116) Piccin, M.; Bais, G.; Grillo, V.; Jabeen, F.; De Franceschi, S.; Carlino, E.; Lazzarino, M.; Romanato, F.; Businaro, L.; Rubini, S.; Martelli, F.; Franciosi, A., Physica E: Low-dimensional Systems and Nanostructures 2007, 37 (1-2), 134-137.
  130. (119) Mohammad, S. N., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2010, 28 (2), 329.
  131. (120) Brett, M. J.; Hawkeye, M. M., Science 2008, 319 (5867), 1192-1193.
  132. (122) Powell, R. C.; Lee, N. E.; Kim, Y. W.; Greene, J. E., J. Appl. Phys. 1993, 73 (1), 189.
  133. (123) Hughes, W. C., Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 1995, 13 (4), 1571.
  134. (124) Botchkarev, A.; Salvador, A.; Sverdlov, B.; Myoung, J.; Morkoç, H., J. Appl. Phys. 1995, 77 (9), 4455.
  135. (125) Molnar, R. J.; Moustakas, T. D., J. Appl. Phys. 1994, 76 (8), 4587.
  136. (126) Grandal, J.; Sánchez-García, M. A.; Calleja, E.; Luna, E.; Trampert, A., Appl. Phys. Lett. 2007, 91 (2), 021902.
  137. (127) Huang, J. H.; Wang, C. Y.; Liu, C. P.; Chu, W. H.; Chang, Y. J., Appl Phys a-Mater 2007, 87 (4), 749-753.
  138. (128) Suzuki, T.; Ko, H. J.; Setiawan, A.; Kim, J. J.; Saitoh, K.; Terauchi, M.; Yao, T., Mater. Sci. Semicond. Process. 2003, 6 (5-6), 519-521.
  139. (129) Kobayashi, A.; Kawaguchi, Y.; Ohta, J.; Fujioka, H.; Fujiwara, K.; Ishii, A., Appl. Phys. Lett. 2006, 88 (18), 181907.
  140. (130) Stoica, T.; Meijers, R. J.; Calarco, R.; Richter, T.; Sutter, E.; Luth, H., Nano Lett 2006, 6 (7), 1541-7.
  141. (131) King, P. D. C.; Veal, T. D.; McConville, C. F., Phys. Rev. B 2008, 77 (12), 125305.
  142. (132) Funato, M.; Kawakami, Y., MRS Bull. 2009, 34 (5), 334-340.
  143. (133) Masui, H.; Nakamura, S.; DenBaars, S. P.; Mishra, U. K., Ieee T Electron Dev 2010, 57 (1), 88-100.
  144. (135) Kawakami, Y.; Nishizuka, K.; Yamada, D.; Kaneta, A.; Funato, M.; Narukawa, Y.; Mukai, T., Appl. Phys. Lett. 2007, 90 (26), 261912.
  145. (136) Wang, Z. L.; Yang, R.; Zhou, J.; Qin, Y.; Xu, C.; Hu, Y.; Xu, S., Materials Science and Engineering: R: Reports 2010, 70 (3-6), 320-329.
  146. (137) Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X.; Wang, Z. L., ACS Nano 2012, 6 (10), 9229-36.
  147. (138) Yang, Q.; Wang, W. H.; Xu, S.; Wang, Z. L., Nano Lett. 2011, 11 (9), 4012-4017.
  148. (139) Yang, Q.; Guo, X.; Wang, W. H.; Zhang, Y.; Xu, S.; Lien, D. H.; Wang, Z. L., ACS Nano 2010, 4 (10), 6285-6291.
  149. (140) Yu, R.; Dong, L.; Pan, C.; Niu, S.; Liu, H.; Liu, W.; Chua, S.; Chi, D.; Wang, Z. L., Adv Mater 2012, 24 (26), 3532-3537.
  150. (141) Zhou, Y. S.; Hinchet, R.; Yang, Y.; Ardila, G.; Songmuang, R.; Zhang, F.; Zhang, Y.; Han, W.; Pradel, K.; Montes, L.; Mouis, M.; Wang, Z. L., Adv Mater 2013, 25 (6), 883-888.
  151. (143) Minary-Jolandan, M.; Bernal, R. A.; Kujanishvili, I.; Parpoil, V.; Espinosa, H. D., Nano Lett. 2012, 12 (2), 970-976.
  152. (144) Araneo, R.; Lovat, G.; Burghignoli, P.; Falconi, C., Adv Mater 2012, 24 (34), 4719-4724.
  153. (145) Zhang, Z.; Yao, K.; Liu, Y.; Jin, C.; Liang, X.; Chen, Q.; Peng, L. M., Adv. Funct. Mater. 2007, 17 (14), 2478-2489.
  154. (146) Zhou, J.; Gu, Y. D.; Fei, P.; Mai, W. J.; Gao, Y. F.; Yang, R. S.; Bao, G.; Wang, Z. L., Nano Lett. 2008, 8 (9), 3035-3040.
  155. (147) Wang, Z. L., Adv Mater 2012, 24 (34), 4632-4646.
  156. (148) Xiang, H. J.; Yang, J.; Hou, J. G.; Zhu, Q., Appl. Phys. Lett. 2006, 89 (22), 223111.
  157. (149) Gao, Y.; Wang, Z. L., Nano Lett 2009, 9 (3), 1103-10.
  158. (151) Zhou, J.; Fei, P.; Gu, Y.; Mai, W.; Gao, Y.; Yang, R.; Bao, G.; Wang, Z. L., Nano Lett 2008, 8 (11), 3973-3977.
  159. (153) Colakerol, L.; Veal, T. D.; Jeong, H. K.; Plucinski, L.; DeMasi, A.; Learmonth, T.; Glans, P. A.; Wang, S.; Zhang, Y.; Piper, L. F.; Jefferson, P. H.; Fedorov, A.; Chen, T. C.; Moustakas, T. D.; McConville, C. F.; Smith, K. E., Phys Rev Lett 2006, 97 (23), 237601.
  160. (154) Pomarico, A. A.; Huang, D.; Dickinson, J.; Baski, A. A.; Cingolani, R.; Morkoç, H.; Molnar, R., Appl. Phys. Lett. 2003, 82 (12), 1890.
  161. (155) Lochthofen, A.; Mertin, W.; Bacher, G.; Hoeppel, L.; Bader, S.; Off, J.; Hahn, B., Appl. Phys. Lett. 2008, 93 (2), 022107.
  162. (156) Ku, N. J.; Huang, J. H.; Wang, C. H.; Fang, H. C.; Liu, C. P., Nano Lett 2012, 12 (2), 562-568.
  163. (159) Chen, X.; Xu, S.; Yao, N.; Shi, Y., Nano Lett 2010, 10 (6), 2133-7.
  164. (160) Nilsson, H. A.; Thelander, C.; Froberg, L. E.; Wagner, J. B.; Samuelson, L., Applied Physics Letters 2006, 89 (16).
  165. (161) Zhao, M. H.; Wang, Z. L.; Mao, S. X., Nano Lett. 2004, 4 (4), 587-590.
  166. (165) Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M. F., Nano Lett. 2007, 7 (10), 2966-2969.
  167. (166) Ku, N. J.; Wang, C. H.; Huang, J. H.; Fang, H. C.; Huang, P. C.; Liu, C. P., Adv Mater 2013, 25 (6), 861-866, 936.
  168. (167) Xu, S.; Wei, Y.; Liu, J.; Yang, R.; Wang, Z. L., Nano Lett 2008, 8 (11), 4027-32.
  169. (168) Wang, X.; Liu, J.; Song, J.; Wang, Z. L., Nano Lett 2007, 7 (8), 2475-9.
  170. (169) Liu, J.; Fei, P.; Song, J.; Wang, X.; Lao, C.; Tummala, R.; Wang, Z. L., Nano Lett. 2008, 8 (1), 328-332.
  171. (170) Wu, W.; Wen, X.; Wang, Z. L., Science 2013, 340 (6135), 952-957.
  172. (171) Yang, R.; Qin, Y.; Li, C.; Dai, L.; Wang, Z. L., Appl. Phys. Lett. 2009, 94 (2), 022905.
  173. (172) Gao, Y.; Wang, Z. L., Nano Lett. 2007, 7 (8), 2499-2505.
Times Cited
  1. 王超鴻(2015)。分子束磊晶成長氮化鎵奈米線陣列之矽摻雜濃度對其壓電元件及發電機性質之研究。成功大學材料科學及工程學系學位論文。2015。1-113。