Title

相異輕摻雜區濃度之高壓金氧半場效電晶體其熱載子可靠度之研究

Translated Titles

Hot Carrier Reliability of High Voltage MOSFET for Different Lightly Doped Drain Doping Concentration

Authors

沈尚鋒

Key Words

高壓金氧半場效電晶體 ; 輕摻雜汲極 ; 熱載子導致之退化 ; 電腦輔助設計模擬 ; HVMOSFET ; LDD ; hot-carrier-induced degradation ; TCAD simulation

PublicationName

成功大學微電子工程研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

陳志方

Content Language

英文

Chinese Abstract

在本論文中,我們探討不同輕摻雜汲極(Lightly Doped Drain)濃度元件之可靠度分析,主要研究不同輕摻雜汲極濃度的高壓(HV)金氧半場效電晶體(MOSFET)元件之特性與受熱載子應力後產生的退化與元件生命週期(lifetime)之預測與探討。 首先,針對高壓金氧半場效電晶體元件在現今生活中的應用與其優點特色作簡介。再來描述本論文的研究動機,對於不同輕摻雜汲極濃度所造成不同基板電流大小之現象,針對此方面作更深入的研究。在本論文中亦會介紹元件所產生基板電流的機制、熱載子效應與元件可靠度分析、和運用電腦輔助設計(TCAD)模擬加以分析元件內部電特性。 在基礎介紹後,開始呈現此研究的元件結構與定義其元件內部區域並且陳述元件的量測設定與方法,其中包含:元件電流ID-VG、ID-VD、基板電流ISUB-VG、崩潰電壓VBD以及片電阻RS之量測。 本研究主要會探討不同的輕摻雜汲極濃度之元件的熱載子可靠度分析並且比較不同輕摻雜汲極濃度之元件的生命週期。本文會先介紹我們量測熱載子應力的實驗設置與偏壓條件,且使用電腦輔助設計模擬輔助量測結果。分析結果顯示較高的輕摻雜汲極濃度之元件有較長的生命週期,但其基板電流卻也有較高的趨勢。因此藉由電腦輔助設計了解其電流路徑與在不同元件中放置界面缺陷(Nit)於衝擊離子化效應最嚴重區域,並解釋較高的輕摻雜汲極濃度之元件具有較長的生命週期卻也具有較大的基板電流之現象。

English Abstract

In the thesis, we study the reliability analysis of different lightly doped drain (LDD) doping concentrations device, and mainly research the characteristics of the high voltage metal-oxide-semiconductor field effect transistor (HV-MOSFET) devices with different LDD doping concentrations and the device degradation after the hot carrier stress and the prediction and discussion of device lifetime. First, the application and the advantages of HV-MOSFET were illustrated. This thesis motivation of high-voltage device with different LDD dosage was presented. For the different LDD dosage caused the phenomenon of different substrate current (ISUB) magnitude, so for this aspect will be more detailed study. In this thesis, the mechanism of substrate current generation, hot carrier effect, and reliability analysis were performed. Also, the use of technology computer aid design (TCAD) simulation to analyze the internal electrical characteristics of devices. After the introduction of the basic characteristics, the structure of the devices, defined the internal region of the device, and the measurement setup and methodology were also described. Including device current ID-VG, ID-VD, substrate current ISUB-VG, off-state breakdown voltage VBD, and sheet resistance RS. This study will mainly investigate the hot carrier reliability analysis of different LDD dosage devices and compare the lifetime of devices with different LDD dosage. This thesis will introduce our measurement setup of hot carrier stress and bias conditions, and the TCAD simulation was used to confirm the measurement data. The results show that the device with higher LDD dosage has a longer lifetime, but the substrate current also has a high trend. The TCAD was used to simulate the current flowline and put the interface state (Nit) to different devices in the most serious region of the impact ionization rate and to explain the higher LDD dosage of the device has a longer lifetime but also has a large substrate current phenomenon.

Topic Category 電機資訊學院 > 微電子工程研究所
工程學 > 電機工程
Reference
  1. [2]Zitouni, M., F. Morancho, H. Tranduc, P. Rossel, J. Buxo, I. PageÁs, and S. Merchant (1999), “A new lateral power MOSFET for smart power ICs: the LUDMOS concept”, Microelectronics Journal , 30(6), Page(s) : 551-561.
    連結:
  2. [4]B. S. Doyle, Member, IEEE, and K. R. Mistry, Member, IEEE “Anomalous Hot-Carrier Behavior for LDD p-Channel Transistors’’, IEEE Electron Device Letters VOL.14 No.11 November, 1993, Page(s): 536-538.
    連結:
  3. [5]Li, Y. Q., C. A. T. Salama, M. Seufert, P. Schvan, and Mike King (1997), “Design and Characterization of Submicron BiCMOS Compatible High-Voltage NMOS and PMOS Devices”, IEEE Transactions on Electron Devices, 44 (2), Page(s) : 331-338.
    連結:
  4. [6]Mikoshiba, H., T Horiuchi, and K. Hamano (1986), “Comparison of Drai Structures in n-Channel MOSFET’s,” IEEE Transactions on Electron Devices, vol.ED-33, no. 1, 1986, Page(s) : 140-144.
    連結:
  5. [7]Ogura, S., P. J. Tsang, W.W. Walker, D.L. Critchlow, and J.F. Shepard (1981), “Elimination of hot electron gate current by the lightly doped drain-source structure,” IEEE Electron Devices Meeting, International, 27, Page(s) : 651-654.
    連結:
  6. [9]Jone F. Chen, Member, IEEE, Kuen-Shiuan Tian, Shiang-Yu Chen, Kuo-Ming Wu, J. R. Shih, and Kenneth Wu, “Mechanisms of Hot-Carrier-Induced Threshold-Voltage Shift in High-Voltage p-Type LDMOS Transistors”, IEEE Transactions on Electron Devices, VOL. 56, NO. 12, DECEMBER 2009, Page(s) : 3203-3206.
    連結:
  7. [10]Jone F. Chen, Tzu-Hsiang Chen and Deng-Ren Ai “Two-stage hot-carrier-induced degradation of p-type LDMOS transistors”, IEEE Electronics Letters, 6th November 2014 Vol. 50 No. 23 Page(s) : 1751-1753.
    連結:
  8. [12]Hodges, S. ; Microsoft Res. Cambridge, Cambridge, UK, “Prototyping Connected Devices for the Internet of Things” Computer ,Volume:46 , Issue: 2, Page(s) : 26-34.
    連結:
  9. [13]Zanella, A. ; Dept. of Inf. Eng., Univ. of Padova, Padua, Italy “Internet of Things for Smart Cities”, Internet of Things Journal, IEEE, Vol.1, Issue 1, Page(s) : 22-32.
    連結:
  10. [14]Commercial and industrial lighting-
    連結:
  11. [16]Medical Electronic-
    連結:
  12. [17]Apple products-
    連結:
  13. [18]Bullet Train-
    連結:
  14. [19]Consumer Electronic-
    連結:
  15. [21]TAKEDA,E; KUME,H; TOYABE,T “Submicrometer MOSFET Structure for Minimizing Hot-Carrier Generation”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 29, NO. 4, 1982, Page(s) : 241-248.
    連結:
  16. [22]R. Dreesen,K. Croes, J. Manca, W. De Ceuninck, L. De Schepper, A. Pergoot, G. Groeseneken, “A new degradation model and lifetime extrapolation technique for lightly doped drain nMOSFETs under hot-carrier degradation”, Microelectronics Reliability. VOL 41, Issue 3, March 2001, Page(s) : 437–443.
    連結:
  17. [23]G. Krieger, “A Simple Technique to Induce and Control Short Pulses of Deep Drain-Source Breakdown Conditions”, IEEE Electron Device Letters , VOL.10, Issue:1, Jan. 1989, Page(s) : 39-41.
    連結:
  18. [25]K. Mayaram,J.C. Lee,C. Hu, “A model for the electric field in lightly doped drain structures” IEEE Transactions on Electron Devices , VOL 34, Issue: 7, Jul 1987, Page(s) : 1509-1518.
    連結:
  19. [26]Duncan, A (Duncan, A); Ravaioli, U (Ravaioli, U); Jakumeit, J (Jakumeit, J), “Full-band Monte Carlo investigation of hot carrier trends in the scaling of metal-oxide-semiconductor field-effect transistors”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 45, NO. 4, APR 1998, Page(s) : 867-876.
    連結:
  20. [29]Jie, B., Chim, W., M. Li, K. Lo (2011), “Analysis of the DCIV Peaks in Electrically Stressed pMOSFETs”, IEEE Transactions on Electron Devices, 48(5), 2011, Page(s) : 913-920.
    連結:
  21. [30]Chen, J., S. Chen, K. Wu, Shih, J., Wu, K. (2009), “Convergence of Hot-Carrier-Induced Saturation Region Drain Current and On-Resistance Degradation in Drain Extended MOS Transistors”, IEEE Transactions on Electron Devices, 56(11), Page(s) : 2843-2847.
    連結:
  22. [31]Wong, W., A. Icel (1995), “A comprehensive methodology and model for the characterization of hot-carrier induced MOS device degradation”, Devices, Circuits and Systems, 1995., Proceedings of the 1995 First IEEE International Caracas Conference, Caracas, December, Page(s) : 183-187.
    連結:
  23. [33]Hu, C. M., C. T. Simon, H. Fu-Chieh, P. K. ko, T. Y. Chan, and K. W. Terrill (1985), “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement”, IEEE Journal of Solid-State Circuits, 20, Page(s) : 295-305.
    連結:
  24. [35]S.R. Banna,P.C.H. Chan,Mansun Chan,P.K. Ko, “Impact of scaling silicon film thickness on hot carrier effects in thin film fully depleted SOI MOSFETs”, Device Research Conference, 1996. Digest. 54th Annual, Page(s) : 112-113.
    連結:
  25. [36]C. Chen,Z.-Z. Liu,T.-P. Ma, “Analysis of enhanced hot-carrier effects in scaled flash memory devices”, IEEE Transactions on Electron Devices, VOL:45, Issue:7, Jul 1998, Page(s) : 1524-1530.
    連結:
  26. [39]Jone F. Chen, Kuo-Ming Wu, J. R. Lee, Yan-Kuin Su, H. C. Wang, Y. C. Lin and S. L. Hsu, “Characteristics and Improvement in Hot-Carrier Reliability of Sub-Micrometer High-Voltage Double Diffused Drain Metal–Oxide–Semiconductor Field-Effect Transistors”, Japanese Journal of Applied Physics, VOL 46, Part 1, Numbers 4B,2007, Page(s) : 2019-2022.
    連結:
  27. [40]Chin-Rung Yan, Jone F. Chen, Chung-Yi Lin, Hao-Tang Hsu, Yu-Jie Liao, Min-Ti Yang, Chih-Yuan Chen, Yin-Chia Lin and Huei-Haurng Chen, “Characteristics of Lateral Diffused Metal–Oxide–Semiconductor Transistors with Lightly Doped Drain Implantation through Gradual Screen Oxide”, Japanese Journal of Applied Physics, Volume 52, Number 4S, 20 February 2013.
    連結:
  28. [42]Swin Super Solution & Service-
    連結:
  29. [43]Chen Min-Liang, Leung Chung-Wai, W.T. Cochran, W. Jungling, C. Dziuba, Yang Tungsheng, “Suppression of hot-carrier effects in submicrometer CMOS technology”, IEEE Transactions on Electron Devices, VOL: 35, Issue: 12, Dec 1988, Page(s) : 2210-2220.
    連結:
  30. [44]T.Y. Chan, P.K. Ko, C. Hu, “A simple method to characterize substrate current in MOSFET's”, IEEE Electron Device Letters , VOL: 5, Issue: 12, Dec 1984, Page(s) : 505-507.
    連結:
  31. [45]Y.A. El-Mansy, A.R. Boothroyd, “A simple two-dimensional model for IGFET operation in the saturation region”, IEEE Transactions on Electron Devices , VOL: 24, Issue: 3, Mar 1977, Page(s) : 254-262.
    連結:
  32. [46]P.K. Ko, R.S. Muller, C. Hu, “A unified model for hot-electron currents in MOSFET's”, Electron Devices Meeting, 1981 International.
    連結:
  33. [47]S. Tanaka, M. Ishikawa, “One-dimensional writing model of n-channel floating gate ionization-injection MOS (FIMOS)”, IEEE Transactions on Electron Devices, VOL: 28, Issue: 10, Oct 1981, Page(s) : 1190-1197.
    連結:
  34. [49]K.N. Quader, C.C. Li, R. Tu, E. Rosenbaum, P.K. Ko, Chenming Hu, “A Bidirectional NMOSFET Current Reduction Model for Simulation of Hot-Carrier-Induced Circuit Degradation”, IEEE Transactions on Electron Devices , Volume:40, Issue:12, Dec. 1993, Page(s) : 2245-2254.
    連結:
  35. [1]Klein, N., S. Levin, G. Fleishon, S. Levy, A. Eyal, and S. Shapira (2008), “Device design tradeoffs for 55v LDMOS driver embedded in 0.18 micronplatform”, IEEE 25th Convention of Electrical and Electronics Engineers in Israel, 2008. IEEEI 2008., Eilat, December, Page(s) : 736-740.
  36. [3]Shi, Y., N. Feilchenfeld, R. Phelps, M. Levy, M. Knaipp, and R. Minixhofer (2011), “Drift Design Impact on Quasi-Saturation & HCI for Scalable N-LDMOS”, IEEE International Symposium on Power Semiconductor Devices & IC's, San Diego, May, Page(s) : 215-218.
  37. [8]Jone F. Chen, Member, IEEE, Kuen-Shiuan Tian, Shiang-Yu Chen, Kuo-Ming Wu, J. R. Shih, and Kenneth Wu “An Investigation on Anomalous Hot-Carrier-Induced On-Resistance Reduction in n-Type LDMOS Transistors’’, IEEE Transactions on Device and Materials Reliability, VOL. 9, NO. 3, SEPTEMBER 2009, Page(s) : 459-464.
  38. [11]D. Brisbin, P. Lindorfer, P. Chaparala, “Substrate Current Independent Hot Carrier Degradation in NLDMOS Devices”, Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 04 December 2006.
  39. http://www.omslighting.com/
  40. [15]Automotive Electronic (Toyota C-HR)-
  41. https://www.toyota.co.uk/chr-testdrive.json
  42. http://www.sanmina.com/industries-contract-electronics- manufacturing/medical-products-systems-devices/medical-products/
  43. https://www.apple.com
  44. http://technews.tw/2015/02/04/hokuriku-shinkansen-e7-w7/
  45. https://boombotix.com/blog/2012/03/26/top-consumer-electronics-of-all-time/
  46. [20]Daycounter, Inc. Engineering Services-High Voltage MOSFET Driver, Salt Lake City, UT, USA. - http://www.daycounter.com
  47. [24]OGURA, S (OGURA, S); TSANG, PJ (TSANG, PJ); WALKER, WW(WALKER,WW);CRITCHLOW,DL(CRITCHLOW,DL);SHEPARD, JF (SHEPARD, JF), “Design and Characteristics of the Lightly Doped Drain-Source (LDD) insulated Gate Field-Effect Transistor”, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 15, NO. 4, 1980, Page(s) : 424-432.
  48. [27]C.C.C. Leung, P.A. Childs, “Gate current suppression in buried lightly doped drain (BLDD) MOSFETs”, Sub-Micron VLSI Reliability, IEE Colloquium on , 06 August 2002.
  49. [28]Bae, K., M. Jin, H. Lim, L. Hwang, D. Shin, J. Park, J. Heo, J. Lee, J. Do, I. Bae, C. Jeon, and J. Park (2011), “Behaviors and physical degradation of HfSiON MOSFET linked to strained CESL performance booster”, Reliability Physics Symposium (IRPS), 2011 IEEE International, Monterey, April, Page(s) : PL.1.1-PL.1.5 .
  50. [32]Wolf, S. (1995), Silicon Processing for the VLSI Era volume 3: The Submicron MOSFET, Sunset Beach, California, U. S. A: Lattice Press.
  51. [34]Rajan Arora,Zachary E. Fleetwood,En Xia Zhang,Nelson E. Lourenco,John D. Cressler,Ronald D. Schrimpf, Akil K. Sutton,Greg Freeman,Brian Greene, “Impact of Technology Scaling in sub-100 nm nMOSFETs on Total-Dose Radiation Response and Hot-Carrier Reliability”, IEEE Transactions on Nuclear Science, VOL:61, Issue:3, June 2014 , Page(s) : 1426-1432.
  52. [37]R. Woltjer,G.M. Paulzen,P.H. Woerlec,C.A.H. Juffermans,H. Lifka, “Hot-carrier experiments on scaled NMOS transistors”, Solid State Device Research Conference, 1990. ESSDERC '90. 20th European, 10-13 Sept. 1990, Page(s) : 249-252.
  53. [38]Silvaco “TCAD World Leader” Silvaco engineered excellence.
  54. [41]Agilent Technologies, B1500A semiconductor device analysis introduction - https://www.testworld.com/used-electronic-test-equipment/keysight-agilent-parametric-test-systems/keysight-agilent-b1500a-semiconductor-device-parameter-analyzer-characterization-system-mainframe-easyexpert/
  55. http://www.3-.com.tw/fengxi/front/bin/ptdetail.phtml?Part=darkbox&Category=40
  56. [48]Chenming Calvin Hu, “Modern Semiconductor Devices for Integrated Circuits”, Pearson Education, 2010, Page(s) : 220-222.