Title

結合原子轉移自由基聚合、開環聚合、點擊化學合成含乙二醇聚胜肽嵌段共聚物之自組裝結構

Translated Titles

Self-Assembled Structures from PEGylated Polypeptide Block Copolymers Synthesized Using a Combination of ATRP, ROP, and Click Chemistry

Authors

李博丞

Key Words

微胞 ; 自組裝 ; 聚胜肽 ; 二級結構 ; Micelles ; Self-assembly ; Polypeptides ; Secondary structure

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

郭紹偉

Content Language

繁體中文

Chinese Abstract

本研究結合原子轉移自由基聚合(ATRP)、開環聚合(ROP)與點擊化學反應(click chemistry)合成出一個新型含乙二醇聚胜肽雙嵌段共聚物聚苯乙烯-b-聚[(丙炔基谷氨酸)-g-(甲氧基乙氧基乙烷基)] [polystyrene-b-poly(γ-propargyl-L -glutamate-g-2-(2-methoxyethoxy)ethyl)]。首先利用傅立葉紅外線光譜儀、廣角度X光射線繞射儀測定側鏈含乙二醇聚胜肽雙嵌段共聚物於固態下之二級結構的α螺旋構型,再藉由圓二色光譜儀測定於液態下之二級結構的轉變。接著再使用小角度X光射線散射儀與穿透式電子顯微鏡可觀察到聚苯乙烯-b-聚[(丙炔基谷氨酸)-g-(甲氧基乙氧基乙烷基)]於固態下的層板結構,而層板中聚胜肽鏈段又以α螺旋構型,自組裝成圓柱狀六角堆積結構,其方向垂直於層板,形成多層次自組裝行為。本研究亦於二甲基甲醯氨與沉澱劑(水、乙腈)之混合溶液裡可觀測到一系列微胞結構,由於聚苯乙烯與沉澱劑之交互作用參數不同,於二甲基甲醯氨與乙腈系統裡只能觀測到球型微胞,然而於二甲基甲醯氨與水混合溶液系統裡,隨著水比例增加,可觀測到微胞結構型態改變,從球型到蠕蟲狀、囊泡與大型複合微胞。

English Abstract

In this study, we used a combination of atom transfer radical polymerization, ring opening polymerization, and click chemistry to synthesize new PEGylated polypeptide block copolymers of polystyrene-b-poly(γ-propargyl-L-glutamate-g- 2-(2-methoxyethoxy)ethyl) [PS-b-(PPLG-g-MEO2)]. We employed FTIR and WAXD to determine the secondary structures of the α-helical conformations of these PEGylated polypeptide block copolymers in the solid state, and circular dichroism spectroscopy to characterize them in solution. Hierarchical self-assembly of the PS-b-(PPLG-g-MEO2) diblock copolymers in the bulk state (characterized using WAXD, SAXS, and TEM) led to the formation of lamellar structures as a result of microphase separation of the diblock copolymers; the hexagonal cylinder packing nanostructure featured α-helical conformations of PEGylated polypeptide segments, which were oriented perpendicular to the director of the lamellar structure formed by the diblock copolymers. We obtained a range of micellar structures from the PS-b-(PPLG-g-MEO2) diblock copolymer in DMF (common solvent) upon the addition of selective solvents (H2O or MeCN). We observed only spherical micelles from the PS-b- (PPLG-g-MEO2) diblock copolymer in DMF/MeCN systems at all MeCN compositions. The micelle structures changed, however, from spherical structures to long wormlike, vesicle, and large compound micelles in the DMF/H2O system upon increasing the content of water. These different morphology transformations arose as a result of very different PS–solvent (H2O or MeCN) interaction parameters.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. 1. M. Matsen and F. Bates, Macromolecules, 1996, 29, 1091-1098.
    連結:
  2. 4. F. Henselwood, G. Wang and G. Liu, J. Appl. Polym. Sci., 1998, 70, 397-408.
    連結:
  3. 5. L. Zhang and A. Eisenberg, J. Am. Chem. Soc., 1996, 118, 3168-3181.
    連結:
  4. 6. P. Bhargava, J. X. Zheng, P. Li, R. P. Quirk, F. W. Harris and S. Z. Cheng, Macromolecules, 2006, 39, 4880-4888.
    連結:
  5. 7. L. Zhang and A. Eisenberg, Polym. Adv. Technol., 1998, 9, 677-699.
    連結:
  6. 10. R. A. Copeland,Methods for protein analysis: a practical guide to laboratory protocols; Chapman & Hall: London, 1994.
    連結:
  7. 13. L. Pauling and R. B. Corey, J. Am.Chem. Soc., 1950, 72, 5349.
    連結:
  8. 15. P. Sarkar and P. Doty, Proceedings of the National Academy of Sciences of the United States of America, 1966, 55, 981.
    連結:
  9. 16. N. J. Greenfield and G. D. Fasman, Biochemistry, 1969, 8, 4108-4116.
    連結:
  10. 18. A. Barth, Prog. Biophys. Mol. Biol., 2000, 74, 141-173.
    連結:
  11. 23. S. W. Kuo and C. J. Chen, Macromolecules, 2011, 44, 7315-7326.
    連結:
  12. 25. P. Bhargava, Y. Tu, J. X. Zheng, H. Xiong, R. P. Quirk and S. Z. J. Cheng, Am. Chem. Soc., 2007, 129, 1113-1121.
    連結:
  13. 28. A. C. Engler, H. i. Lee and P. T. Hammond, Angew. Chem. Int. Ed., 2009, 48, 9334-9338.
    連結:
  14. 30. C. M. Chopko, E. L. Lowden, A. C. Engler, L. G. Griffith and P. T. Hammond, ACS Macro Letters, 2012, 1, 727-731.
    連結:
  15. 35. M. Kato, M. Kamigaito, M. Sawamoto and T. Higashimura, Macromolecules, 1995, 28, 1721-1723.
    連結:
  16. 36. K. Matyjaszewski and N. V. Tsarevsky, Nature chemistry, 2009, 1, 276-288.
    連結:
  17. 37. K. Matyjaszewski, Isr. J. Chem., 2012, 52, 206-220.
    連結:
  18. 39. J. Xia and K. Matyjaszewski, Macromolecules, 1997, 30, 7692-7696.
    連結:
  19. 40. J. Gromada and K. Matyjaszewski, Macromolecules, 2001, 34, 7664-7671.
    連結:
  20. 41. R. Huisgen, Proc. Chem. Soc., 1961, 5, 357-396.
    連結:
  21. 44. N. Purdie and H. Brittain, Analytical applications of circular dichroism; Elsevier Science Ltd, 1994; Vol. 14.
    連結:
  22. 46. K. Watanabe, K. Muto and T. Ishii, Biospectroscopy, 1997, 3, 103-111.
    連結:
  23. 48. Y. Mai and A. Eisenberg, Chem. Soc. Rev., 2012, 41, 5969-5985.
    連結:
  24. 2. S. P. Lim, L. Luo, D. Maysinger and A. Eisenberg, Langmuir, 2002, 18, 9996-10004.
  25. 3. S. M. Harada, K. Yamauchi, A. Harada, I. Takamisawa, K. Shimokado, and K. Kataoka, Gene therapy, 2002, 9, 407-414.
  26. 8. D. Y. Chen and M. Jiang, Acc. Chem. Res., 2005, 38, 494-502.
  27. 9. D. N. Bikiarisz, G. Z. Papageorgiou and D. S. Achilias, Polym. Degrad. Stab., 2006, 91, 31-43.
  28. 11. H. Fu, Protein-protein interactions: methods and applications; Humana Pr Inc: New Jersey 2004; Vol. 261.
  29. 12. 劉家福 蛋白質溶液結構測定方法 黑龍江教育出版社 哈爾濱, 2010.
  30. 14. L. Pauling, R. B. Corey and H. R. Branson, Proceedings of the National Academy of Sciences, 1951, 37, 205-211.
  31. 17. X. L. Qi, C. Holt, D. McNulty, D. T. Clarke, S. Brownlow and G. R. Jones, J. Biochem., 1997, 324, 341-346.
  32. 19. Y. El Khoury, R. Hielscher, M. Voicescu, J. Gross and P. Hellwig, Vib. Spectrosc., 2011, 55, 258-266.
  33. 20. E. I. Ramm, V. P. Gorenburg, A. B. Klionsky and E. E. Smirnova, Biofizika, 1980, 25, 559-560.
  34. 21. E. Peggion, A. Cosani and M. Terbojevich, Macromolecules, 1974, 7, 453-459.
  35. 22. Y. S. Lu, Y. C. Lin and S. W. Kuo, Macromolecules, 2012, 45, 6547-6556.
  36. 24. H. Bader, H. Ringsdorf and B. Schmidt, Die Angewandte Makromolekulare Chemie, 1984, 123, 457-485.
  37. 26. P. Papadopoulos, G. Floudas, H. Klok, I. Schnell and T. Pakula, Biomacromolecules, 2004, 5, 81-91.
  38. 27. X. Zhao, Z. Poon, A. C. Engler, D. K. Bonner and P. T. Hammond, Biomacromolecules, 2012, 13, 1315-1322.
  39. 29. Y. Cheng, C. He, C. Xiao, J. Ding, X. Zhuang and X. Chen, Polym. Chem., 2011, 2, 2627-2634.
  40. 31. Y. C. Lin and S. W. Kuo, Polym. Chem., 2012, 3, 162-171.
  41. 32. Y. C. Lin, P. I. Wang and S. W. Kuo, Soft Matter, 2012, 8, 9676-9684.
  42. 33. Y. C. Lin and S. W. Kuo, Polym. Chem., 2012, 3, 882-891.
  43. 34. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117, 5614-5615.
  44. 38. K. Min and K. Matyjaszewski, Central European Journal of Chemistry, 2009, 7, 657-674.
  45. 42. H. C. Kolb, M. Finn and K. B. Sharpless, Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
  46. 43. V. O. Rodionov, S. I. Presolski, D. Díaz Díaz, V. V. Fokin and M. Finn, J. Am. Chem. Soc., 2007, 129, 12705-12712.
  47. 45. J. T. Yang, C. S. C. Wu and H. M. Martinez, Method Enzymol., 1986, 130, 208-269.
  48. 47. S. Lecommandoux, F. Checot, R. Borsali, M. Schappacher, A. Deffieux, A. Brulet and J. Cotton, Macromolecules, 2002, 35, 8878-8881.