Title

螢光聚胜肽之特殊作用力:聚集增強放光及組態轉換

Translated Titles

Specific interaction in fluorescent polypeptide: aggregation-enhanced emission and conformational transformation

Authors

施克穎

Key Words

聚集發光增強 ; 螢光 ; 二級結構 ; 聚集誘導放光 ; 開環聚合反應 ; 氫鍵作用力 ; 螺旋-to-不規則 ; 組態轉變 ; 水溶性聚胜肽 ; 四苯基噻吩 ; water-soluble polypeptide ; ring opening polymerization ; conformational transformation ; helix-to-coil ; Aggregation-enhanced emission ; fluorescence ; aggregation-induced emission ; tetraphenylthiophenen ; hydrogen-bond interaction ; secondary structure

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

洪金龍

Content Language

英文

Chinese Abstract

摘要-1  我們合成一個具有聚集誘導放光及分子內電荷轉移特性的新穎末端吡啶官能基發光體(AnPy),藉由氫鍵作用力與不同比例的聚酪氨酸(PTyr)進行混摻,當混摻較低比例AnPy時,剛硬的PTyr鏈段充當AnPys之間氫鍵的模板,造成限制轉動及增強AIE物質AnPys的發光強度,且導致非結晶相的出現,可以藉由不同混摻組成下的玻璃轉移溫度來觀察;相對的,在加入較高比例AnPy時,過量的AnPys會在非結晶區域之間形成新的二聚體結晶,並行的二聚體有更好阻礙分子轉動的能力,因此相對於非結晶的混摻而有較高的發光強度。在這篇研究中,我們將探討AIE螢光發光行為與混摻的組態及限制分子轉動能力之間的關係。 摘要-2 TP-iPPLG是將具有聚集增強放光(AEE)特性的四苯基噻吩(TP)發光體,利用開環聚合反應(ROP)導入水溶性聚(γ-谷胺酸炔丙酯)的末端位置,用於偵測聚蛋白質的二級結構(α-螺旋)與 AEE 螢光物質之間的關係。在TP-iPPLG的系統中,當主鏈是較大的α-螺旋時,末端位置之發光體TP會受到阻隔,無法藉由分子間聚集而導致AEE效應不顯著;相對的,主鏈為不規則結構時,TP則較容易靠近而導致其具有較強的放光。因此,TP-iPPLG在鹼性水溶液下成功誘導螺旋-to-不規則結構的轉換,導致增強放光行為。因此,在這篇研究中,我們將探討pH值導致構形轉變與AEE放光效應之間的關係。

English Abstract

Abstract-1 New pyridine-terminated fluorophore of 4-[2-(9-Anthryl)vinyl]pyridine (AnPy) with intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) properties was synthesized and was blended with different amounts of polytyrosine (PTyr) through preferable hydrogen-bond (H-bond) interactions. In blends of low AnPy content, the rigid PTyr peptide chains serve as templates to H-bond to AnPys, imposing rotational restriction and reinforcing the AIE-related emission intensity of AnPys, resulting in amorphous blends with the observed glass transitions dependent on the composition of the blends. In contrast, when large amounts of AnPys were added, excess AnPys will form new crystals, in between the amorphous regions, constituted by the near parallel dimers of AnPys. With the hampered molecular rotation, the parallel dimers of AnPys in the highly AnPy-loaded blends emit strongly with intensity much higher than those for the amorphous blends. In this study, conformation of the blends and degree of restricted molecular rotation were assessed in order to correlate with the AIE-related fluorescence behaviour. Abstract-2 Tetraphenylthiophene (TP) with aggregation-enhanced emission (AEE) property was used as terminal fluorophore of the water-soluble poly(γ-propargyl-L-glutamate) (PPLG)-based polymers of TP-iPPLGs to probe the relationship between the secondary structure (α-helix) of polypeptides and the AEE-related emission behavior. Intermolecular aggregation of the terminal TP unit in TP-iPPLG is sterically blocked by the large α-helical PPLG chains, leading to the weak AEE-related fluorescence in water. In contrast, the intermolecular approach between the terminal TP units of TP-iPPLG is accessible if TP was connected by peptide chin in random coil structure. Therefore, helix-to-coil transition induced in the alkaline aqueous solution successfully enhances the emission intensity of the TP-iPPLG solution. The pH-induced conformation change in relationship to the AEE-related emission behavior is therefore evaluated in this study.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. (1) Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew. Chem., Int. Ed. 2003, 42, 4640.
    連結:
  2. (2) Klok, H. A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217.
    連結:
  3. (3) Tang, H.; Zhang, D. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2340.
    連結:
  4. (4) Habraken, G. J. M.; Koning, C. E.; Heise, A. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 6883.
    連結:
  5. (5) Robinson, C.; Ward, J. C. Nature 1957, 180, 1183.
    連結:
  6. (7) Tohyama, K.; Miller, W. G. Nature 1981, 289, 813.
    連結:
  7. (8) Kuo, S. W.; Lee. H. F.; Chang, F. C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3108.
    連結:
  8. (13) Kuo, S. W.; Chen, C. J. Macromolecules 2011, 44, 7315.
    連結:
  9. (14) Kuo, S. W.; Chen, C. J. Macromolecules 2012, 45, 2442.
    連結:
  10. (25) Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev. 2011, 40, 3483.
    連結:
  11. (36) Nayak, M. K. J. Photochem. Photobiol., A 2011, 217, 40.
    連結:
  12. (37) Chien, R. H.; Lai, C. T.; Hong, J. L. J. Phys. Chem. C 2011, 115, 12358.
    連結:
  13. (38) Chien, R. H.; Lai, C. T.; Hong, J. L. J. Phys. Chem. C 2011, 115, 20732.
    連結:
  14. (39) Chien, W. L.; Yang, C. M.; Chen, T. L.; Li, S. T.; Hong, J. L. RSC Adv. 2013, 3, 6930.
    連結:
  15. (46) Kuo, S. W.; Tung, P. H.; Chang, F. C. Macromolecules 2006, 39, 9388.
    連結:
  16. (48) Sanchez-Ferrer, A.; Mezzenga, R. Macromolecules 2010, 43, 1093.
    連結:
  17. (51) Kricheldorf, H. R.; Muller, D. Macromolecules 1983, 16, 615.
    連結:
  18. (1) Kricheldorf, H. R. Angew. Chem. Int. Ed. 2006, 45, 5752–5784.
    連結:
  19. (2) Deming, T. J. Prog. Polym. Sci. 2007, 32, 858–875.
    連結:
  20. (3) Deming, T. J. in Peptide Hybrid Polymers; Polypeptide and Polypeptide Hybrid Copolymer Synthesis via NCA Polymerization, Klok, H. A.; Schlaad, H.; Eds.; Springer: Berlin Heidelberg, 2006, pp 1–18.
    連結:
  21. (11) Zhang, S. G. Nat. Biotechnol. 2003, 21, 1171–1178.
    連結:
  22. (16) Lin, Y. C.; Wang, P. I.; Kuo, S. W. Soft Matter 2012, 8, 9676–9684.
    連結:
  23. (17) Doty, P.; Bradbury, J. H.; Holtzer, A. M. J. Am. Chem. Soc. 1956, 78, 947–954.
    連結:
  24. (23) Aggregation-Induced Emission: Fundamentals. Qin, A.; Tang, B. Z., Eds.; John Wiley & Sons, Ltd. 2013.
    連結:
  25. (26) Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. Chem. Soc. Rev. 2011, 40, 3483–3495.
    連結:
  26. (30) Lai, C. T.; Hong, J. L. J. Phys. Chem. B, 2010, 114, 10302–10310.
    連結:
  27. (37) Kricheldorf, H. R.; Muller, D. Macromolecules 1983, 16, 615.
    連結:
  28. (38) Sela, M.; Katchalski, E. Adv. Protein Chem., 1959, 14, 391–478.
    連結:
  29. (39) Hwang, J.; Deming, T. J. Biomacromolecules 2001, 2, 17–21.
    連結:
  30. (44) Doty, P.; Bradbury, J. H.; Holtzer, A. M. J. Am. Chem. Soc.1956, 78, 947–954.
    連結:
  31. (46) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 2nd Ed; Kluwer Academic/Plenum Publishers, N. Y.; N. Y.; page 53, 1999.
    連結:
  32. Chapter 1
  33. (6) Yu, S. M.; Conticello, V. P.; Zhang, G.; Kayser, C.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A. Nature 1997, 389, 167.
  34. (9) Gitsas, A.; Floudas, G.; Mondeshki, M.; Spiess, H. W.; Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Macromolecules 2008, 41, 8072.
  35. (10) Papadopoulous, P.; Floudas, G.; Klok, H. A.; Schnell, I.; Pakula, T. Biomacromolecules 2004, 5, 81.
  36. (11) Blondelle, S. E.; Forood, B.; Houghten, R. A.; Perez-Paya, E. Biochemistry 1997, 36, 8393.
  37. (12) Gitsas, A.; Floudas, G.; Mondeshki, M.; Spiess, H. W.; Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Macromolecules 2008, 41, 8072.
  38. (15) Lu, Y. S.; Lin, Y. C.; Kuo, S. W. Macromolecules 2012, 45, 6547.
  39. (16) Doty, P.; Bradbury, J. H.; Holtzer, A. M. J. Am. Chem. Soc. 1956, 78, 947.
  40. (17) V. Pokorná, V.; Výprachtický; D.; Pecka, J. Macromol. Biosci. 2001, 1, 185.
  41. (18) Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.; Kim, C.; Winnik, M. A.; Manners, I. Angew. Chem. 2005, 117, 8178.
  42. (19) Rubatat, L.; Kong, X.; Jenekhe, S. A.; Ruokolainen, J.; Hojeij, M.; Mezzenga, R. Macromolecules 2008, 41, 1846.
  43. (20) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
  44. (21) Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J. Mater. Chem. 2001, 11, 2974.
  45. (22) Aggregation-Induced Emission: Fundamentals
  46. (23) Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. 2009, 19, 249.
  47. (24) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332.
  48. (26) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
  49. (27) Qin, A.; Lam, J. W. Y.; Tang, B. Z. Prog. Polym. Sci. 2012, 37, 182.
  50. (28) Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z. Chem. Mater. 2003, 15, 1535.
  51. (29) Tang, B. Z.; Geng, Y.; Lam, J. W. Y.; Li, B.; Jing, X.; Wang, X.; Wang, F.; Pakhomov, A. B.; Zhang, X. Chem. Mater. 1999, 11, 1581.
  52. (30) Shi, J.; Chang, N.; Li, C.; Mei, J.; Deng, C.; Luo, X.; Liu, Z.; Bo, Z.; Dong, Y. Q.; Tang, B. Z. Chem. Commun. 2012, 48, 10675.
  53. (31) Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; Zou, D.; Jiang, M. J. Phys. Chem. C 2007, 111, 6544.
  54. (32) Chen, P.; Lu, R.; Xue, P.; Xu, T.; Chen, G.; Zhao, Y. Langmuir 2009, 25, 8395.
  55. (33) Zhang, P.; Wang, H.; Liu, H.; Li, M. Langmuir, 2010, 26, 10183.
  56. (34) Kim, T. H.; Choi, M. S.; Sohn, B. H.; Park, S. Y.; Lyoo, W. S.; Lee, T. S. Chem. Commun. 2008, 2364.
  57. (35) Wan, J. H.; Mao, L. Y.; Li, Y. B.; Li, Z. F.; Qiu, H. Y.; Wang, C.; Lai, G. Q. Soft Matter 2010, 6, 3195.
  58. (40) Deng, S. L.; Chen, T. L.; Chien, W. L.; Hong, J. L. J. Mater. Chem. C 2014, 2, 651.
  59. (41) Li, S. T.; Lin, Y. C.; Kuo, S. W.; Chuang, W. T.; Hong, J. L. Polym. Chem. 2012, 3, 2393.
  60. (42) Scheule, R. K.; Cardinaux, F.; Taylor, G. T.; Scheraga, H. A.Macromolecules 1976, 9, 23.
  61. (43) Pasman, P.; Rob , F. ; Verhoeven, J. W. J. Am. Chem. Soc., 1982, 104 (19), pp 5127–5133
  62. (44) Chen, X. G.; Schweitzer-Stenner, R.; Asher, S. A.; Mirkin, N. G.; Krimm, S. J. Phys. Chem. B 1995, 99, 3074.
  63. (45) Schweitzer-Stenner, R.; Sieler, G.; Mirkin, N. G.; Krimm, S. J. Phys. Chem. A 1998, 102, 118.
  64. (47) Kuo, S. W.; Lin, C. L.; Chang, F. C. Polymer 2002, 43, 3943.
  65. (49) Khoury, Y. E.; Hielscher, R.; Voicescu, M.; Gross, J.; Hellwig, P. Vibr. Spectrosc. 2011, 55, 258.
  66. (50) Murata, K.; Katoh, E.; Kuroki, S.; Ando, I. J. Mol. Struct. 2004, 689, 223.
  67. (52) Yang, C. M.; Lee, I W.; Chen, T. L.; Chien, W. L.; Hong, J. L. J. Mater. Chem. C 2013, 1, 2842
  68. (53) Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y. Q.; Liu, Z.; Bo, Z.; Tang, B. Z. Adv. Mater. 2011, 23, 3261.
  69. Chapter 2
  70. (4) Munoz, V.; Serrano, L. Nat. Struct. Biol. 1994, 1, 399–409.
  71. (5) Fiori, W. R.; Lundberg, K. M.; Millhauser, G. L. Nat. Struct. Biol. 1994, 1, 374–377.
  72. (6) Goodman, C. M.; Choi, S.; Shandler, S.; DeGrado, W. F. Nat. Chem. Biol. 2007, 3, 252–262.
  73. (7) Fezoui1, Y.; Hartley, D. M.; Walsh1, D. M.; Selkoe1, D. J.; Osterhout, J. J.; Teplow, D. B. Nat. Struct. Biol. 2000, 7, 1095–1099.
  74. (8) Drin, G.; Casellal, J.-F.; Gautier, R.; Boehmer, T.; Schwartz, T. U.; Drin, B. A. Nat. Struct. Mol. Biol. 2007, 14, 138–146.
  75. (9) Bryson, J. W.; Betz, S. F.; Lu, H. S.; Suich, D. J.; Zhou, H. X.; O''Neil, K. T.; DeGrado, W. F. Science 1995, 270, 935–941.
  76. (10) Bang D.; Gribenko, A. V.; Tereshko, V.; Kossiakoff, A. A.; Kent, S. B.; Makhatadze, G. I. Nat. Chem. Biol. 2006, 2, 139–143.
  77. (12) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001, 294, 1684–1688.
  78. (13) Nowak1, A. P.; Breedveld, V.; Pakstis, L.; Ozbas, B.; Pine, D. J.; Pochan, D.; Deming, T. J. Nature 2002, 417, 424–428.
  79. (14) Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J. Nature Commun. 2011, 2, 1–9.
  80. (15) Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Macromolecules 2011, 44, 6641 – 6644
  81. (18) Pokorná, V.; Výprachtický, D.; Pecka, J. Macromol. Biosci. 2001, 1, 185–190.
  82. (19) Kim, K. T.; Park, C.; Vandermeulen, G. W. M.; Rider, D. A.; Kim, C.; Winnik, M. A.; Manners, I. Angew. Chem. Int. Ed. 2005, 117, 8178–8182.
  83. (20) Rubatat, L.; Kong, X.; Jenekhe, S. A.; Ruokolainen, J.; Hojeij, M.; Mezzenga, R. Macromolecules 2008, 41, 1846–1852.
  84. (21) Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740–1741.
  85. (22) Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J. Mater. Chem. 2001, 11, 2974–2981.
  86. (24) Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. 2009, 19, 249–285.
  87. (25) Hong, y.; Lam, J. W. Y.; Tang, B. Z. Chem. Commun. 2009, 4332–4353.
  88. (27) Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361–5388.
  89. (28) Qin, A.; Lam, J. W. Y.; Tang, B. Z. Prog. Polym. Sci. 2012, 37, 182–209.
  90. (29) Chien, R. H.; Lai, C. T.; Hong, J. L. J. Phys. Chem. C, 2011, 115, 5958–5965.
  91. (31) Lai, C. T.; Chien, R. H.; Kuo, S. W.; Hong, J. L. Macromolecules 2011, 44, 6546–6556.
  92. (32) Li, S. T.; Lin, Y. C.; Kuo, S. W.; Chuang, W. T.; Hong, J. L. Polym. Chem. 2012, 3, 2393–2402.
  93. (33) Lin, Y. C.; Kuo, S. W. Polym. Chem. 2012, 3, 162–171.
  94. (34) Lin, Y. C.; Kuo, S. W. Polym. Chem. 2012, 3, 882–891.
  95. (35) Papadopoulos, P.; Floudas, G.; Klok, H. A.; Schnell, I.; Pakula, T. Biomacromolecules 2004, 5, 81–91.
  96. (36) Murata, K.; Katoh, E.; Kuroki, S.; Ando, I. J. Mol. Struct. 2004, 689, 223.
  97. (40) Zimmermann, R.; Kratzmu, T.; Erickson, D.; Li, D.; Braun, H. G.; Werner, C. Langmuir 2004, 20, 2369–2374.
  98. (41) Ananda, K.; Vasudev, P. G.; Sengupta, A.; Poopathi, K. M.; Shamala, R. N.; Balaram, P. J. Am. Chem. Soc. 2005, 127,16668–16674.
  99. (42) Toniolo, C.; Polese, A.; Formaggio, F.; Crisma, M.; Kamphuis, J. J. Am. Chem. Soc. 1996, 118, 2744–2745.
  100. (43) Torii, T.; Yamashita, T.; Horie, K. Eur. Polym. J. 1993, 29, 1265–1270.
  101. (45) Bovey, F. A.; and Tiers, G. V. D. Adv. Polym. Sci. 1963, 3, 139–195.
  102. (47) Moriyama, Y.; Ohta, D.; Hadiya, K.; Mitsui, Y.; Takeda, K. J. Protein Chem. 1996, 15, 265–272.
  103. (48) He, X. M.; Carter, D. C. Nature 1992, 358, 209–215.
  104. (49) Zhang, Y. Z.; Zhou, B.; Zhang, X. P.; Huang, P,; Li, C. H.; Liu, Y.; J. Hazard. Mater. 2009, 163, 1345–1352.