Title

MgO-Fe2O3二元成分系統於大氣及水中脈衝雷射剝熔蝕之相行為

Translated Titles

Phase behavior of MgO-Fe2O3 binary by PLA in air v.s. water

Authors

林宗義

Key Words

水中脈衝雷射 ; 大氣脈衝雷射 ; 相變化 ; 特殊晶界 ; 奈米凝聚物 ; 層狀結構 ; 超晶格 ; 順晶 ; 電子顯微鏡 ; (MgXFe1-X)O ; 光譜 ; MgFe2+XO4 ; electron microscopy ; PLA ; absorption spectrum ; nanocondensates ; phase transformation ; PLAL ; MgFe2+XO4 ; paracrystal ; (MgXFe1-X)O ; special grain boundary ; lamellae

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

沈博彥

Content Language

繁體中文

Chinese Abstract

本實驗利用特定之Nd-YAG脈衝雷射參數於大氣及水中對MgO-α-Fe2O3二元成分系統(摩爾比9:1為主, 1:1, 1:9為輔)固溶粉末與固溶燒結圓碇靶材進行轟擊,並且使用X光繞射、電子顯微鏡與振動/吸收光譜,觀察在此動態高溫高壓以及急熱急冷實驗條件下的產物,尤其著重於比較不同環境情況下鎂方鐵礦,亦即(MgXFe1-X)O及鎂鐵礦(MgFe2+XO4)結晶凝聚物之相對穩定性、形狀、壓縮內應力、與缺陷微觀組織。 結果發現於大氣中,而且脈衝雷射功率1.5x107 W/cm2的條件下轟擊9:1成份圓碇靶材的時候,具有岩鹽結構(簡稱R)內含順晶缺陷的鎂方鐵礦為相對穩定,其奈米凝聚物大致以立方體呈現,具有發達的{100}、{110}表面,以及次要的{111}表面與階檻,藉以聚簇成鍊狀,並且貼合形成[110]A//[100]B的(11 ̅1 ̅)A//(001)B異質晶界以及與少量尖晶石(S)顆粒聚簇形成(100)R/(310)S的異質晶界使(01 ̅1)R//(001)S。此外,經由急速凝固而形成的鎂方鐵礦則為球狀,其粒徑較大。根據吸收光譜量測,這些綜合奈米凝聚物以及次微米凝固顆粒物質之最小能隙值約為~3 eV。至於在雷射較高功率1.67x1011 W/cm2的條件下,針對MgO-α-Fe2O3=9:1之圓碇靶材進行轟擊,奈米鎂方鐵礦凝聚物更是穩定,以具有發達的{100}、{110}表面以及極性{111}階檻的立方體呈現,而且均勻散佈,奈米顆粒間易形成雙晶具有整合{111}或非整合異質界面,甚或{110}70.5°扭轉晶界,內部除了有壓縮內應力(高達2.5 GPa)之外,也出現點缺陷集合的波浪狀順晶排列,其週期約為2nm,根據吸收光譜,其最小能隙值亦約為~3eV。至於1:1或1:9成份圓碇靶材經脈衝雷射FR-1064nm-1100mJ-240μs剝熔蝕的時候,具有鎂鐵礦尖晶石結構的MgFe2+XO4則相對穩定,最小能隙值約為2.5 至3eV。 而MgO:Fe2O3=9:1反應固溶為 (MgXFe1-X)O及MgFe2+XO4之粉末於水中進行脈衝雷射模式為Q1064-600mJ-16ns (功率1.25x1011 W/cm2)的轟擊,則形成球狀奈米鎂方鐵礦及含鎂之α-Fe2O3,以及水合非晶態層狀物,或聚簇形成球狀核殼奈米結構,其中核為(MgX Fe1-X)O與MgFe2+XO4尖晶石平行磊晶共存,周圍環繞的層狀殼為雙氫氧化物(lamellar layer double hydroxide)。這些岩鹽與尖晶石結構共生的凝聚物常常聚簇成具有高角度彎曲晶界的多晶球狀顆粒。

English Abstract

This research is about Nd-YAG pulsed laser ablation (PLA) of MgO-Fe2O3 (M9F1, i.e. molar ratio 9:1 and additional M1F1, M1F9 for comparison) solid solution powder in water vs. sintered disk in air in order to fabricate alloyed condensates and particulates of rock salt- (i.e. magnesiowüstite,(MgXFe1-X)O) and/or spinel- type (i.e. magnesioferrite, MgFe2+xO4) for X-ray diffraction, electron microscopy and vibration/absorption spectroscopy characterizations. The product by PLA of the sintered M9F1 disk in air turned out to be predominant magnesiowüstite in the form of solidified spherical particulate and condensed nanoparticles with significant internal compressive stress, paracrystalline distribution of defect clusters, and well- developed {100}, {110} faces and {111} facets for (hkl)-specific coalescence as single crystal or twinned bicrystal with coherent {111} interface, incoherent ledge and/or {110} 70.5o twist boundary and A/B bicrystal with (11 ̅1 ̅)A/(001)B interface having [110]A//[100]B. By contrast, PLA of M9F1 solid solution powder in water caused mainly the formation of turbostratic LDH (layer double hydroxide)-encapsulated spherical polycrystals with intimate intergrowth of parallel epitaxial magnesiowüstite and magnesioferrite in domains separated by high-angle grain boundary. The additional attempt on PLA of M1F1 and M1F9 in air or water caused rather complicated phase assemblage, i.e. predominant MgFe2+XO4,minor (MgXFe1-X)O derivatives and α-Fe2O3.The nanoparticles as-formed by PLA under a dynamical high-temperature high-pressure condition in air have a minimum band gap around 3 eV, which can be tailored lower by decreasing MgO content for potential opto-electronic catalytic applications.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. Berthe L., Fabbro R., Peyre P., Tollier L., Bartnicki E., “Shock waves from a water-confined laser-generated plasma,” J. Appl. Phys. 82 (1997) 2826-2832.
    連結:
  2. Bolfan-Casanova N., Keppler H., Rubie D. C., “Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: Implications for the distribution of water in the Earth’s mantle, ” Earth Planet Sci. Letters 182 (2000) 209-221.
    連結:
  3. Bolfan-Casanova N., Mackwell S., Keppler H., McCammon C., Rubie D. C., “Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle” Geophysical Research Letters 29 (2002) 89-1–89-4.
    連結:
  4. Catlow C.R.A., Fender B.E.F., “Calculations of defect clustering in Fe1-xO,” J. Phys. C: Solid State Phys. 8 (1975) 3267-3279.
    連結:
  5. Chen N.S., Yang X.J., Liu E.S., “ Reducing gas sensing properties of ferrite compounds MFe2O4 (M=Cu, Zn, Cd and Mg),” Sens. Actuators B 66 (2000). 178-180.
    連結:
  6. Chen Q., Rondinone A. J., Chakoumakos B. C., Zhang Z. J., “Synthesis of superparamagnetic MgFe2O4 nanoparticles by coprecipitation,” Journal of Magnetism and Magnetic Materials 194 (1999) 1-7.
    連結:
  7. Fender B.E.F., Riley F.D., in Eyring L., O’Keefe M. (eds.),“The chemistry of extended defects in non-metallic solids,” North-Holland, Amsterdam,1970.
    連結:
  8. Geohegan D.B., “Fast intensified-CCD photography of YBa2Cu3O7-X laser ablation in vacuum and ambient oxygen” Appl. Phys. Lett. 60 (1992) 2732-2734.
    連結:
  9. Huang C. N., Chen S.Y., Tsai M.H., Shen P., “Laser ablation condensation and phase change of Ni1-XCoXO nanoparticles,” Journal of Crystal Growth 305 (2007) 285-295.
    連結:
  10. Ingle K.W., Crocker A.G., “On the structure of high-angle (110) CSL twist boundaries in f.c.c. metals”,Philosophical Magazine A 41 (1980) 713-721.
    連結:
  11. Ito E., Takahashi E., “Postspinel transformation in the system Mg2SiO4-Fe2SiO4 and some geophysical implications,” J. Geophys. Res., 94 (1987) 10637-10646.
    連結:
  12. Jia C.J., Liu Y., Schwickardi M., Weidenthaler C., Spliethoff B., Schmidt W., Schuth F., “ Small gold particles supported on MgFe2O4 nanocrystals as novel catalyst for CO oxidation, ” Applied Catalysis A: General 386 (2010) 94–100.
    連結:
  13. Karki B.B., Stixrude L., Clark S.J., Warren M.C., Ackland G.J., Crain J., “Structure and elasticity of MgO at high pressure,” American Mineralogist 82 (1997) 51-60.
    連結:
  14. Kröger F.A. and Vink H.J., “Relations between the concentrations of imperfections in crystalline solids,” In Solid State Phys. (edited by Seitz F. and Tunbull D.),Vol3, (1956) 307-435.
    連結:
  15. Li Y. L. ,Yao K. L., Liu Z. L., Gao G. Y. “First-principles study of the composition, structure, and stability of the FeO (111) surface” Physical review B 72 (2005)155446.
    連結:
  16. Lin J.F., Heinz D.L., Mao H.K., Hemley R.J., Devine J.M., Li J., Shen G., “Stability of magnesiowüstite in Earth’s lower mantle,” Proc. Natl Acad Sci. 100 (2003) 4405-4408.
    連結:
  17. Marine W., Patrone L., Luk’yanchuk B., Sentis M., “Strategy of nanocluster and nanostructure synthesis by conventional pulsed laser ablation,” Applied Surface Science 154-155 (2000) 345-352.
    連結:
  18. Pradeep A. , Priyadharsini P., Chandrasekaran G., “Sol- gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study,” Journal of Magnetism and Magnetic Materials 320 (2008) 2774-2779.
    連結:
  19. Pradhan S.K. , Bid S., Gateshki M., Petkov V.,“Microstructure characterization and cation distribution of nanocrystalline magnesium ferrite prepared by ball milling,” Materials Chemistry and Physics 93 (2005) 224-230.
    連結:
  20. Saito K., Takatani K., Sakka T., Ogata Y.H., “Observation of the light emitting region produced by pulsed laser irradiation to a solid–liquid interface,” Appl. Surf. Sci. 197-198 (2002) 56-60.
    連結:
  21. Sankaramahalingam A., Lawrence J.B., “Structural, optical, and magnetic properties of MgFe2O4 synthesized with addition of copper” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 42 (2012) 121–127.
    連結:
  22. Saylor D. M.,Mason D. E., Rohre Gregory S. “Experimental Method forDetermining Surface Energy Anisotropy and Its Application to Magnesia” J. Am. Ceram. Soc. 83 (2000) 1226–32.
    連結:
  23. Shannon R.D., “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst.A32 (1976) 751-767.
    連結:
  24. Shimizu Y., Arai H., Seiyama T., “Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors, ”Sens. Actuators 7 (1985) 11-22.
    連結:
  25. Svein S., Fredrik G. “Calculation of the phase boundaries of wüstite at high pressure” Journal of Geophysical Research 101 (1996) 11531-11540.
    連結:
  26. Tsai M.H., Shen P., Chen S.Y., “Defect generation of anatase nanocondensates via coalescence and transformation from dense fluorite-type TiO2¬,” Journal of Applied Physics 100 (2006) 114313.
    連結:
  27. Turkin A.I., Drebushchak V.A., “ Synthesis and calorimetric investigation of stoichiometric Fe-spinels: MgFe2O4,” Journal of Crystal Growth 265 (2004) 165-167.
    連結:
  28. Verma S., Joy P.A., Khollam Y.B., Potdar H.S., Deshpande S.B., “Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method,” Materials Letters 58 (2004) 1092-1095.
    連結:
  29. Welberry T.R., Christy A.G. “A paracrystalline description of defect distributions in wustite,Fe1-XO,” J. Solid State Chem. 117 (1995) 398-406.
    連結:
  30. Welberry T.R., Christy A.G., “Defect distribution and the diffuse X-ray diffraction pattern of wüstite, Fe1-xO,” Phys. Chem. Materials 24 (1997) 24-38.
    連結:
  31. Willey R.J., Noirclerc P., Busca G. “Preparation and characterization of magnesium chromite and magnesium ferrite aerogels,” Chem. Eng. Commun. 123 (1993) 1-16.
    連結:
  32. Yagi S., Ichikawa Y., Yamada I., Doi T., Ichitsubo T., Matsubara E., “Synthesis of binary magnesium–transition metal oxides via inverse coprecipitation, ” Japanese Journal of Applied Physics 52 (2013) 025501.
    連結:
  33. Yang K.C., Shen P., “On the precipitation of coherent spinel nanoparticles in Ti-doped MgO,” J. solid State Chem. 178 (2005) 661-670.
    連結:
  34. Zhang H., Banfield J.F., “Interatomic Coulombic interactions as the driving force for oriented attachment, ” CrystEngComm 16 (2014) 1568-1578.
    連結:
  35. Zhao L., Li X.Y., Zhao Q.D., Qu Z.P., “Synthesis characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal, ” J. Hazard. Mater. 184 (2010) 704-709.
    連結:
  36. Phillips B. and Muan A., “System Mg-FeO-Fe2O3,” J. Am. Ceram. Soc., 45 (1962) 590-591.
  37. Porter D.A., Easterling K.E., “Phase transformations in metals and alloys,” 2nd ed CRC press (1992) 292-302.
  38. Putnis A., “Introduction to mineral sciences,” Cambridge University Press, Cambridge, 1992, p. 135.
  39. Ullmann M., Friedlander S.K., Schmidt-Ott A. “Nanoparticle formation by laser ablation,” Journal of Nanoparticle Research 4 (2002) 499-509.
  40. 蔡宗明, “MgO添加NiO或CoO造成之相變化” ,國立中山大學91學年度碩士論文(2003)。
  41. 楊國政, “含鎂氧化鈷,含鈦氧化鈷,含鈦氧化鎂,與含鋯二氧化鈦系統中之缺陷及合,奈米析出與顆粒布朗運動”,國立中山大學94學年度博士論文 (2005)。
  42. 游惠喬, “TiO2-SnO2反應燒結及雷射剝蝕凝聚之非平衡相變化”, 國立中山大學94學年度碩士論文 (2005)。
  43. 李名言, “NiO-2CoO岩鹽結構固溶燒結體因退火及顆粒大小引起尖晶石化和晶向重調” 國立中山大學89學年度碩士論文 (2000)。
  44. 詹雅婷, “NiO-Al2O3二元成份系統粉末於水中的雷射脈衝反應與大氣中的早期燒結-粗化-聚簇動力學” 國立中山大學102學年度碩士論文 (2013)。
  45. 陳軍翰, “溶入氧化鉻之金紅石態或後金紅石態二氧化鈦的動態凝聚、分解與光性” 國立中山大學99學年度碩士論文 (2010)。
  46. 陳佩汝, “氧化鎂粉末之早期燒結與水中脈衝雷射碎化” 國立中山大學101學年度碩士論文 (2012)。