Title

含高折射率物質之全像儲存材料的製備與光學性質量測

Translated Titles

Fabrication and Optical Property of Holographic Storage Materials with Refractive Index Species

Authors

朱致穎

Key Words

有機-無機基材 ; 丙烯醯胺 ; 繞射效率 ; 體積全像 ; 溶膠凝膠法 ; Diffraction efficiency ; Sol-gel ; Organic-inorganic substrate ; Acrylamide ; Volume hologram

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

許子建

Content Language

繁體中文

Chinese Abstract

本實驗利用有機無機基材之丙烯醯胺感光高分子,以綠光(532 nm)進行光學干涉,形成光柵,應用於光學全像儲存材料。以四乙氧基矽烷(TEOS)及矽烷偶合劑(γ-GPTMS)作為前驅物,加入單體丙烯醯胺及光起始劑(Irgacure 784),並添加不同比例之四丁氧基鈦(Ti(OBu)4)進行溶膠凝膠反應。以單體添加量、高折射率物質(Ti(OBu)4)為實驗參數對繞射效率的影響,當單體(AA)添加30 wt%時,有最佳的繞射效率,再加入Ti(OBu)4使繞射效率由54.33±2.79%增加至64.08±3.34%。改變光強度探討繞射點散射之現象,並以光聚合反應及高階繞射探討光柵成因與衰退。試片照光干涉後,單體成功進行鏈聚合反應,由傅立葉轉換紅外線光譜儀分析雙鍵轉換率。當試片照光達最大繞射效率,雙鍵轉換率為40~50%,持續照光後轉換率達70%,藉此探討雙鍵轉換率對光柵的影響。以AFM掃描光柵週期及深度,而光柵深度與繞射效率呈現正相關。 利用Kogelnik波動理論計算體積全像片的Δn值,並透過理論計算求得薄全像試片的Δn值分布,未來可藉由薄全像結論推算出體積全像的Δn值分布,進而了解試片中單體聚合程度。

English Abstract

In this study, the holographic storage materials are prepared with organic-inorganic substrate and acrylamide-based photopolymer. Holographic grating is recorded by green light (532 nm). The photopolymeric composite used in this work is based on acrylamide (AA) as monomer , precursor such as tetraethyl orthosilicate (TEOS) and 3-Glycidoxypropyltrimethoxy silane (γ-GPTMS), and Bis(η5-2,4-cylcopentadien-1-yl)-bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium (Irgacure 784) as photoinitiator.The photopolymer film incorporates Titanium(IV) butoxide (Ti(OBu)4) as high refractive index species (HRIS). A diffraction efficiency of 54.33±2.79 % with acrylamide concentration of 30 wt% and a film thickness of 0.88 mm are obtained. The diffraction efficiency is up to 64.08±3.34 % by adding Ti(OBu)4.The diffraction point scattering is investigated by varying the intensity of light exposure. The grating growth and decay are influenced by the photopolymerization and high-order diffraction. Holographic recording is attempted by photopolymerization of the monomers, and the C=C conversion rate is explored by FTIR spectroscopies. The period and depth of grating is investigated by AFM. The depth of grating is related to diffraction efficiency. It is calculated the Δn of volume hologram by Kogelnik coupled wave theory and the distribution of Δn in thin hologram by theory of computation. In the future, the distribution of Δn in volume hologram can be calculated by the result of thin hologram to realize the photopolymerization rate.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. [1] A.T. Friberg, R. Dändliker, Advances in information optics and photonics, SPIE Press, 2008.
    連結:
  2. [2] M.W. Daniels, J. Sefcik, L.F. Francis, A.V. McCormick, Journal of colloid and interface science, 219 (1999) 351-356.
    連結:
  3. [3] C.Y. Kuo, T.C. Hsu, W.H. Su, J. Non-Cryst. Solids, 358 (2012) 735-740.
    連結:
  4. [5] D. Gabor, Nature, (1948) 777-778.
    連結:
  5. [7] N. Phillips, D. Porter, Journal of Physics E: Scientific Instruments, 9 (1976) 631.
    連結:
  6. [8] J.W. Goodman, S.C. Gustafson, Optical Engineering, 35 (1996) 1513-1513.
    連結:
  7. [10] D.K. Angell, Appl. Optics, 26 (1987) 4692-4702.
    連結:
  8. [11] T.A. Shankoff, Appl. Optics, 7 (1968) 2101-&.
    連結:
  9. [12] R. Changkakoti, S.V. Pappu, Appl. Optics, 25 (1986) 798-801.
    連結:
  10. [16] M. Irie, Chem. Rev., 100 (2000) 1683-1683.
    連結:
  11. [20] M.L. Calvo, P. Cheben, J. Opt. A-Pure Appl. Opt., 11 (2009) 11.
    連結:
  12. [21] A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, R. Madrigal, SPIE Europe Optics+ Optoelectronics, International Society for Optics and Photonics, 2009, pp. 735802-735801-735815.
    連結:
  13. [26] K. Curtis, D. Psaltis, Appl. Optics, 33 (1994) 5396-5399.
    連結:
  14. [27] N. Suzuki, Y. Tomita, Appl. Optics, 46 (2007) 6809-6814.
    連結:
  15. [28] N. Suzuki, Y. Tomita, Appl. Optics, 43 (2004) 2125-2129.
    連結:
  16. [30] N. Hayashida, A. Kosuda, J. Yoshinari, Jpn. J. Appl. Phys., 47 (2008) 5895-5899.
    連結:
  17. [34] S. Calixto, Appl. Optics, 26 (1987) 3904-3910.
    連結:
  18. [37] M. Moothanchery, I. Naydenova, V. Toal, Opt. Express, 19 (2011) 13395-13404.
    連結:
  19. [39] N. Suzuki, Y. Tomita, T. Kojima, Appl. Phys. Lett., 81 (2002) 4121-4123.
    連結:
  20. [40] C. Sanchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, R. Nussbaumer, Adv. Funct. Mater., 15 (2005) 1623-1629.
    連結:
  21. [44] P. Cheben, M.L. Calvo, Appl. Phys. Lett., 78 (2001) 1490-1492.
    連結:
  22. [48] A. Soleimani Dorcheh, M. Abbasi, Journal of materials processing technology, 199 (2008) 10-26.
    連結:
  23. [49] J.N. Israelachvili, Chemica Scripta, 25 (1985) 7-14.
    連結:
  24. [52] P. Innocenzi, J. Non-Cryst. Solids, 316 (2003) 309-319.
    連結:
  25. [53] K. Balachandaran, R. Venckatesh, R. Sivaraj, International Journal of Engineering Science and Technology, 2 (2010) 3695-3700.
    連結:
  26. [54] L. Vasconcelos, D. Cordeiro, V.C. Costa, E.H. Martins Nunes, A.C. Soares Sabioni, M. Gasparon, W.L. Vasconcelos, Materials Sciences & Applications, 2 (2011).
    連結:
  27. [55] M. Aizawa, Y. Nosaka, N. Fujii, J. Non-Cryst. Solids, 128 (1991) 77-85.
    連結:
  28. [56] S. Jeong, J. Moon, J. Non-Cryst. Solids, 351 (2005) 3530-3535.
    連結:
  29. [64] S.M. Teng, Master Thesis, (2012).
    連結:
  30. [4] O.V. Sakhno, L.M. Goldenberg, J. Stumpe, T.N. Smirnova, Nanotechnology, 18 (2007) 7.
  31. [6] P.J. Vanheerden, Appl. Optics, 2 (1963) 387-392.
  32. [9] W.R. Graver, J.W. Gladden, J.W. Eastes, Appl. Optics, 19 (1980) 1529-1536.
  33. [13] F.S. Chen, Lamacchi.Jt, D.B. Fraser, Appl. Phys. Lett., 13 (1968) 223-225.
  34. [14] P. Gunter, Journal De Physique, 44 (1983) 141-147.
  35. [15] J.O. White, M. Croningolomb, B. Fischer, A. Yariv, Appl. Phys. Lett., 40 (1982) 450-452.
  36. [17] M. Serwadczak, S. Kucharski, Journal of sol-gel science and technology, 37 (2006) 57-62.
  37. [18] H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems: Molecules and Systems, Access Online via Elsevier, 2003.
  38. [19] A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. B-Lasers Opt., 81 (2005) 167-169.
  39. [22] S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R.F. Madrigal, M. Ulibarrena, D. Levy, Appl. Optics, 37 (1998) 7604-7610.
  40. [23] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia, Opt. Express, 12 (2004) 1780-1787.
  41. [24] A. Murciano, L. Carretero, S. Blaya, R.F. Madrigal, A. Fimia, Appl. Phys. B-Lasers Opt., 83 (2006) 619-622.
  42. [25] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, A. Fimia, Applied Physics B, 74 (2002) 603-605.
  43. [29] Y. Tomita, N. Suzuki, K. Chikama, Optics letters, 30 (2005) 839-841.
  44. [31] Y.M. Chang, S.C. Yoon, M. Han, Opt. Mater., 30 (2007) 662-668.
  45. [32] M. Feuillade, C. Croutxe-Barghorn, L. Mager, C. Carre, A. Fort, Chem. Phys. Lett., 398 (2004) 151-156.
  46. [33] S. Lee, Y.-C. Jeong, Y. Heo, S.I. Kim, Y.-S. Choi, J.-K. Park, J. Mater. Chem., 19 (2009) 1105-1114.
  47. [35] Y.B. Boiko, V.S. Solovjev, S. Calixto, D.-J. Lougnot, Appl. Optics, 33 (1994) 787-793.
  48. [36] W.S. Kim, Y.C. Jeong, J.K. Park, Opt. Express, 14 (2006) 8967-8973.
  49. [38] S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. Lett., 84 (2004) 4765-4767.
  50. [41] A.B. Samui, Recent patents on materials science, 1 (2008) 74-94.
  51. [42] S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. Madrigal, R. Sastre, F. Amat-Guerri, Journal of Modern Optics, 45 (1998) 2573-2584.
  52. [43] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, Applied Physics B, 77 (2003) 639-662.
  53. [45] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Access Online via Elsevier, 1990.
  54. [46] R.K. Iler, Wiley (New York), 1979.
  55. [47] H. Cogan, C. Setterstrom, Industrial & Engineering Chemistry, 39 (1947) 1364-1368.
  56. [50] M. Nouri-Khezrabad, M. Braulio, V. Pandolfelli, F. Golestani-Fard, H. Rezaie, Ceramics International, (2012).
  57. [51] K. Omura, Y. Tomita, Journal of Applied Physics, 107 (2010) 023107.
  58. [57] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules, Elsevier, 1991.
  59. [58] M. Ivanda, R. Clasen, M. Hornfeck, W. Kiefer, J. Non-Cryst. Solids, 322 (2003) 46-52.
  60. [59] P.F. McMillan, R.L. Remmele Jr, The American mineralogist, 71 (1986) 772-778.
  61. [60] G. S. Tienderson, M.E. Fleet, Structure, 33 (1995) 399-408.
  62. [61] P. Xu, H. Wang, R. Lv, Q. Du, W. Zhong, Y. Yang, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 3911-3920.
  63. [62] C.M. Whang, C.S. Yeo, Y.H. Kim, BULLETIN-KOREAN CHEMICAL SOCIETY, 22 (2001) 1366-1370.
  64. [63] B. Richards, E. Wolf, Proceedings of the Physical Society. Section B, 69 (1956) 854.
  65. [65] R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 57 (1985) 603-619.