Title

以現象圖示法分析台灣高中生之科學探究概念

Translated Titles

Exploring high school student’s conceptions of scientific inquiry in Taiwan through the phenomenographic analysis

Authors

曹昱智

Key Words

學校科學探究 ; 高中生 ; 現象圖示法 ; 科學探究 ; 科學探究概念 ; conception of scientific inquiry ; scientific inquiry ; conception of school scientific inquiry ; phenomenographic method ; high school student

PublicationName

中山大學教育研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

李旻憲

Content Language

繁體中文

Chinese Abstract

本研究旨在以現象圖示法探討台灣高中生之科學探究概念,並參考Tsai(2004)以及Lee、Lin與Tsai(2013)現象圖示法研究中所設計之訪談題目,發展出半結構式的「台灣高中生科學探究概念訪談稿」做為研究工具,進而瞭解臺灣高中生所持學校科學探究概念之現況。本研究研究步驟分為三階段,第一階段為研究工具開發,以初稿對20名自然組高中生進行預試,並邀請一位學者專家共同針對研究工具進行編修與定稿;第二階段為研究資料蒐集,以開發之研究工具對南部三所高中自然組學生總計60名(男女比1:1)進行個別訪談;第三階段為研究資料分析,將所蒐集之研究資料以現象圖示法進行分析,並根據Yang與Tsai(2010)的分類方式將台灣高中生之學校科學探究概念區分為「主要概念」與「發展概念」兩個部分,以瞭解其學校科學探究概念的分布範圍,最後進一步彙整並探討出本研究之研究結果。 本研究主要發現包含:(一)台灣高中生所持學校科學探究概念類型與含義,包含「驗證課本」、「增加知識」、「實際操作」、「升學與就業」、「科學工作」、「探索與思考」、「合作交流」與「創意與設計」。(二)台灣高中生所持學校科學探究概研之類型人數統計,「主要概念」中人數最多的類型為「實際操作」(36.7%),「主要概念」中人數最少的類型為「創意與設計」(1.7%);而「發展概念」中人數最多的類型為「合作交流」(41.7%)。(三)台灣高中生所持學校科學探究概念之階層人數統計,「主要概念」多數是屬於「淺層」階層,佔總人數的73.3%;「發展概念」多數是屬於「深層」階層,佔總人數的90%。(四)台灣高中生所持學校科學探究概念之階層與類別人數統計,台灣高中生「主要概念」多數屬於「方法」類別的「淺層」階層,佔總人數的51.7%;而「發展概念」多數屬於「方法」類別的「深層」階層,佔總人數的71.7%。(五)台灣高中生所持學校科學探究概念分布狀況,「主要概念」為「淺層」之高中生「發展概念」主要分布於「探索與思考」(36.4%)與「合作交流」(29.5%);「主要概念」為「深層」之高中生「發展概念」主要分布於「合作交流」(75%)。

English Abstract

The study aims to explore high school student’s conceptions of school scientific in-quiry in Taiwan. The main purpose of this study consists of: (1) Exploring the type of high school student’s conceptions of school scientific inquiry in Taiwan. (2) Identifying the relationship and difference among high school student’s conceptions of scientific in-quiry in Taiwan. (3) Identifying the distribution of high school student’s conceptions of scientific inquiry in Taiwan. A total of 60 high school students who came from three dif-ferent high schools in the south of Taiwan participated the qualitative interview. Finally, the study used the phenomenographic method to analysis the collected data. And high school student’s conceptions of scientific inquiry were categorized as “main conception” and “achieve conception” based on the research of Yang and Tsai (2010). The main findings were summarized in the following: (1) This study identified eight conceptions of scientific inquiry in Taiwan, including “confirm the knowledge of text-books,” “increase knowledges,” “practical operation,” “further studies & employment,” “scientific work,” “exploration & thinking,” “cooperation,” and “creativity & design.” (2) Most students in Taiwan held the “practical operation” to be their “main conception” (36.7%) , and less students in Taiwan held the “creativity & design” to be their “main conception” (1.7%). Most students in Taiwan held the “cooperation” to be their “achieve conception” (41.7%). (3) 73.3% of the students in Taiwan held the “surface” conceptions to be their “main conception,” and 90% of the students in Taiwan held the “deep” con-ceptions to be their “achieved conception.” (5) 51.7% of the high school students’ main conceptions were related to the “surface approach” aspects, and 71.7% of the high school students’ achieved conceptions were related to the “ deep approach” aspect. (6) Students who held the surface main conception tended to held the “exploration & thinking” (36.4%) and “cooperation”(29.5%) as their achieved conception. And Students who held the “deep main conception” tended to held the “cooperation”(75%) as their achieved concep-tion.

Topic Category 社會科學院 > 教育研究所
社會科學 > 教育學
Reference
  1. 白佩宜、許瑛玿(2011)。探討不同探究式教學法對高一生科學探究能力與學習環境觀感之影響。課程與教學季刊,14(3),123-156。
    連結:
  2. 林美馨、楊芳瑩(2011)。由認識觀發展的角度探討國小學童對科學探究過程之看法。科學教育學刊,19(6),531-548。
    連結:
  3. 封中興(2012)。建模導向的探究模式對八年級學生辨識科學探究成份能力之影響。中等教育,63(1),38-60。
    連結:
  4. 洪振方(2010)。思考導向的探究式學習對國二學生科學探究能力的影響。科學教育學刊,18(5),389-415。
    連結:
  5. 陳均伊(2010)。教師專業成長之個案研究:一位國中自然教師探究教學觀 點的轉變。教育科學研究期刊,55(2),233-264。
    連結:
  6. 溫存儒、段曉林(2002)。探究國一學生科學探究活動之參與內涵及其參與動機之個案研究。彰化師範大學科學教育研究所在職進修碩士專班論文,未出版,彰化。
    連結:
  7. 鄭瑞洲、洪振方、黃臺珠 (2013)。採用多元教學策略的非制式奈米課程對國中生 情境興趣之促進。教育實踐與研究,26(2),1-28。
    連結:
  8. 蔡執仲、段曉林、靳知勤 (2007)。巢狀探究教學模式對國二學生理化學習動機影響之探討。科學教育學刊,15(2),119-144。
    連結:
  9. 謝州恩、劉湘瑤 (2013)。國小三年級學生在資訊素養融入主題探究的科學探究學習態度表現。教育傳播與科技研究,66,53-76。
    連結:
  10. 羅淑瓊、林曉雯(2012)。學童科學探究學習策略量表的編製與發展,科學教育學刊,20(6),515-538。
    連結:
  11. Bartos, S. A., & Lederman N. G. (2014). Teachers’ knowledge structures for nature of science and scientific inquiry: conceptions and classroom practice. Journal of Re-search in Science Teaching, 51(9), 1150-1184.
    連結:
  12. Bell, R. L., Blair, L., Crawford, B., & Lederman, N. G. (2003). Just do it? Impact of a science apprenticeship program on students’ understanding of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509.
    連結:
  13. Bybee, R. (2000). Teaching science as inquiry. In J. Minstrell & E. van Zee (Eds.), In-quiring into inquiry learning and teaching in science. Washington, DC: American Association for the Advancement of Science.
    連結:
  14. Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Con-siderations for effective nature of science instruction. Science & Education, 15(5), 463-494.
    連結:
  15. Chinn, C. A., & Malhotra, B. A. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86, 175-219.
    連結:
  16. of science: a critical review of research, Science Education, 95, 961-999.
    連結:
  17. Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation dis- course in science education. Studies in Science Education, 38, 39-72.
    連結:
  18. perience: Visible scientific inquiry through a virtual chemistry laboratory. Re
    連結:
  19. search in Science Education, 43, 1571-1592.
    連結:
  20. Friberg, F., Dahlberg, k., Petersson, M. N., & Ö hlén, J. (2000). Context and methodo-logical decontextualization in nursing research with examples from phenomenogra-phy. Scandinavian Journal of Caring Sciences, 14(1), 37-43.
    連結:
  21. Herron, M. D. (1971). The nature of science inquiry. School Review, 79(2), 171-212.
    連結:
  22. Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of Education Research, 52, 201-218.
    連結:
  23. Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54.
    連結:
  24. Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347-1362.
    連結:
  25. Liang, L. L., Chen, S., Chen, X., Kaya, O. N., Adams, A. D., Macklin, M., & Ebenezer, J., (2006, April). Student understanding of science and scientific inquiry: revision and further validation of an assessment instrument. The Annual Conference of the National Association for Research in Science Teaching (NARST). San Francisco, CA.
    連結:
  26. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. A., Antink Meyer, A., & Schwartz, R. (2013). Meaningful assessment of learners’ understandings about sci-entific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of Research in Science Teaching, 51, 65-83.
    連結:
  27. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learn-ers’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497-521.
    連結:
  28. Lee, M. H., Lin, T. J., & Tsai, C. C. (2013). Proving or improving science learning? Un-derstanding high school students’ conceptions of science assessment in Taiwan. Science Education, 97(2), 244-270.
    連結:
  29. Lin, T. J., Goh, A. Y. S., Chai, C. S., & Tsai, C. C. (2013). An initial examination of Singaporean seventh and eighth graders’ views of nature of science. Research in Science & Technological Education, 31, 117-132.
    連結:
  30. Linder, C., & Marshall, D. (2003). Reflection and phenomenography: towards theoreti-cal and educational development possibilities. Learning and Instruction, 13(3), 271-284.
    連結:
  31. Marton, F. (1981). Phenomenography - describing conceptions of the world around us.
    連結:
  32. Marton, F., & Säljö, R. (1976). On qualitative differences in learning: I—outcome and process. British journal of educational psychology, 46(1), 4-11.
    連結:
  33. Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59, 14-19.
    連結:
  34. McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the na-ture of science. Science & Education, 17, 249-263.
    連結:
  35. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496.
    連結:
  36. Reid, A., Wood, L. N., Smith, G. H., & Petocz, P. (2005). Intention, approach and out-comes: University mathematics students’ conceptions of learning mathemat-ics. International Journal of Science and Mathematics Education, 3(4), 567-586.
    連結:
  37. Richardson, J. T. E. (1999). The concepts and methods of Phenomenographic Research. Review of Educational Research, 69(1), 53-82.
    連結:
  38. Sadler, T., Burgin, S., McKinney, L., Ponjuan, L. (2010). Learning science through re-search apprenticeships: a critical review of the literature. Journal of Research in Science Teaching, 47(3), 235-256
    連結:
  39. Schwartz, R. S., Lederman, N. G., & Crawford, B. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap be-tween nature of science and scientific inquiry. Science Education, 88(4), 610-645.
    連結:
  40. Shipman, H. L. (2004). Inquiry learning in college classrooms. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science (pp.357-387). Dordrecht: The Netherlands: Kluwer.
    連結:
  41. Tight, M. (2015). Phenomenography: the development and application of an innovative research design in higher education research. International Journal of Social Re-search Methodology(ahead-of-print), 1-20.
    連結:
  42. Tsai, C. C. (2004). Conceptions of learning science among high school students in Tai-wan: A phenomenographic analysis. International Journal of Science Education, 26, 1733-1750.
    連結:
  43. Yang, Y. F., & Tsai C. C. (2010). Conceptions of and approaches to learning through online peer assessment. Learning and Instruction, 20, 72-83.
    連結:
  44. 一、中文部分
  45. 王靜如、周金燕、蔡瑞芬(2006)。國小教師科學教學基準系列報導(二):科學本質與科學探究。屏東教大科學教育,23,3-17。
  46. 洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15(3),641-662。
  47. 教育部(2003)。科學教育白皮書。臺北市:教育部。2015年9月28日,取自 網址https://www.most.gov.tw/most/attachments/7a2c05b5-a3d7-48c3-b4b0-50f404b585ab(科技部網站)
  48. 教育部(2008)。國民中小學九年一貫課程綱要自然與生活科技領域。臺北市:教育部。
  49. 教育部(2009)。普通高級中學課程綱要。臺北市:教育部。
  50. 劉宏文、張惠博(2001):高中學生進行開放式探究活動之個案研究-問題的形成與解決。科學教育學刊,9(2),169-196。
  51. 謝欣穎、林菁 (2013)。省思九年一貫自然與生活科技課程綱要中的科學本質內涵。科學教育研究與發展季刊,103,1-15。
  52. 二、英文部分
  53. Access Center. (2004). Science inquiry: The link to accessing general educatiocurricu-lum. Retrieved October 14, 2015, from https://www.asdk12.org/depts/science/
  54. American Association for the Advancement of Science [AAAS]. (1993). Benchmarks for science literacy: A Project 2061 report. New York: Oxford University Press.
  55. Bybee, R. W. (2010). The teaching of science: 21st century perspectives. Arlington, Vir-ginia: NSTA Press.
  56. Cakir, M. (2008). Constructivist approaches to learning in science and their implications for science pedagogy: A literature review. International Journal of Environmental and Science Education, 3(4), 193-206.
  57. Clark, R.L., M.P. Clough and C.A. Berg. 2000. Modifying Cookbook Labs: A different way of teaching a standard laboratory engages students and promotes understand-ing. The Science Teacher, 67(7):40-43.
  58. Colburn, A. (2000). An inquiry primer. Science Scope, 37, 42-44.
  59. Deng, F., Chen, D. T., Tsai, C. C., & Chai, C. S. (2011). Students’ views of the nature
  60. Donnelly, D., O’Reilly, J., & McGarr, O. (2013). Enhancing the student experiment ex
  61. Hanauer, D., Jacobs-Sera, D., Pedulla, M. L., Cresawn, S. G., Hendrix, R. W., & Hat-full, G. F. (2006) Teaching Scientific Inquiry. Science, 314 (5807), 1880-1881.
  62. Koehler, C. K., Bloom, M. A., & Binns, I. C. (2013). Lights, camera, action! Developing a methodology to document mainsteam films’ portrayal of nature of science and scientific inquiry. The Electronic Journal of Science Education, 17(2).
  63. Lederman, J. S. (2009). Teaching scientific inquiry: Exploration, directed, guided, and open-ended levels. National Geographic Science: Best Practices and Research Base. Hapton-Brown, pp. 8-20.
  64. Lederman, J. S., & Lederman, N. G. (2005, April). Developing and assessing elementary teachers’ and students’ understandings of nature of science and scientific inquiry. The Annual Meeting of the National Association for Research in Science Teaching. Dallas, TX.
  65. Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientifi c inquiry as contexts for the learning of science and achievement of scientifi c liter-acy. International Journal of Education in Mathematics, Science and Technology, 1, 138-147.
  66. Lederman, N. G. (2007). Nature of science: Past, present, and future. In S. K. Abell & N. G. Lederman (Eds.), Handbook ofresearch on science education, 831-879.
  67. Instructional Science, 10, 177-200.
  68. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  69. National Research Council. (2000). Inquiry and the national science education stand-ards. Washington, DC: National Academy Press.
  70. NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
  71. Schwartz, R., Lederman, N. G., & Lederman, J. S. (2008, April). An instrument to as-sess views of scientific inquiry: The VOSI questionnaire. The Annual Conference of the National Association for Research in Science Teaching, Baltimore, MD.
  72. Sonnemann, U. (1954). Existence and therapy: An introduction to phenomenological psychology and existential analysis. New York: Grune and Station.