Title

藉由添加高折射率物質及單體改善具光聚合能力之二氧化矽的繞射效率

Translated Titles

Improving the Diffraction Efficiency of Photopolymerizable Silica by High Refraction Index Species and Monomer

Authors

洪譽

Key Words

繞射點散射 ; 高折射率物質 ; 丙烯醯胺 ; 厚度 ; 無機基材 ; 丙烯酸鹽基 ; Inorganic substrate ; Acrylate ; Acrylamide ; Scattering ; Hight refractive index species ; Thickness

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

許子建

Content Language

繁體中文

Chinese Abstract

本研究是利用溶膠凝膠法來製備無機基材之全像儲存材料,再以綠光雷射進行紀錄干涉形成光柵,由紅光雷射讀取測得繞射強度進而得到繞射效率。無機基材相較於有機基材如PVA,無機基材有較好的材料穩定性、化學穩定性、熱穩定性、等機械性質,因此本研究以四乙氧基矽烷(TEOS)及矽烷偶合劑(γ-GPTMS)作為前驅物形成SiO2網狀構造為本研究的無機基材,除了混合有機單體丙烯酸鹽基(EG-PEA),其折射率有1.518、BMA(Benzyl methacrylate),其折射率有1.512、AA(Acrylamide) ,其折射率有1.460,混合單體比較單體對於繞射效率的影響,也在材料中添加高折射率物質Ti(OBu)4提升繞射效率。光起始劑則選用(Irgacure 784),並添加不同比例之基材:TEOS及γ-GPTMS與單體:EG-PEA、BMA與AA進行溶膠凝膠反應。以材料厚度、單體的比例、Ti(OBu)4等實驗參數進行其對繞射效率的影響,由光學顯微鏡觀察是否有明顯的光柵產生與製作出的試片厚度對於繞射效率的關係,並對於繞射效率之衰退及散射進一步探討,也藉由降低紀錄強度與提升偶合劑比例改善繞射效率衰退及繞射點散射情形。 本實驗以溶膠凝膠法合成出混合單體之試片並製備出厚度在300~1950μm感光儲存材料,得到最大繞射效率有厚度330μm的繞射效率52.34 ±7.12 %也將Ti(OBu)4添加製材料中進而提升繞射效率至52.11±5.64。

English Abstract

In this study, the holographic storage materials are prepared with inorganic matrix by sol-gel method. Sample is recorded by green light (532 nm) and read by red light(633nm) to response to diffraction efficiency. The inorganic precursor such as tetraethyl orthosilicate (TEOS) and 3-Glycidoxypropyltrimethoxy silane (γ-GPTMS), which have better material stability、chemical stability and thermal stability. Therefore, silica network is used to substrate in this study. Besides, the monomer will infiltrate in matrix with EGPEA (Ethylene glycol phenyl ether acrylate)、Benzyl methacrylate (BMA) and Acrylamide (AA) which refractive index is 1.518、1.512 and 1.460.The photopolymer film incorporates Titanium(IV) butoxide (Ti(OBu)4) as high refractive index species (HRIS). A amount of Ti(OBu)4 is Si:Ti=4:1. Bis(η5-2,4-cylcopentadien-1-yl)-bis[2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl]titanium (Irgacure 784) as photoinitiator,the amount og Igacure 784 is 1wt % of monomer. It discuss the relation between diffraction efficiency and thickness、monomer and HRIS. The grating is observed by OM . The period and depth of grating is investigated by AFM. In order to know why the diffraction point scattering and the decay of diffraction efficiency, the light and thermal effect is investigated by varying the intensity of light exposure and TGA. Thickness of a film is from 330 to 1950 μm. The diffraction efficiency is 52.34 ±7.12 % with 330μm. The diffraction efficiency is 52.11±5.64 by adding Ti(OBu)4. Keywords: Inorganic substrate, Acrylate, Acrylamide, High refractive index species,Thickness,Scattering

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. [1] A.T. Friberg, R. Dändliker, Advances in information optics and photonics, SPIE Press, 2008.
    連結:
  2. [2] P. Hariharan "Basic of holography"Cambridge Unerversity Press, Cambridge, 2002
    連結:
  3. [3] M.W. Daniels, J. Sefcik, L.F. Francis, A.V. McCormick, Journal of colloid and interface science, 219 (1999) 351-356.
    連結:
  4. [4] C.Y. Kuo, T.C. Hsu, W.H. Su, J. Non-Cryst. Solids, 358 (2012) 735-740.
    連結:
  5. [6] D.K. Angell, Appl. Optics, 26 (1987) 4692-4702.
    連結:
  6. [7] T.A. Shankoff, Appl. Optics, 7 (1968) 2101-&.
    連結:
  7. [8] R. Changkakoti, S.V. Pappu, Appl. Optics, 25 (1986) 798-801.
    連結:
  8. [12] M. Irie, Chem. Rev., 100 (2000) 1683-1683.
    連結:
  9. [16] M.L. Calvo, P. Cheben, J. Opt. A-Pure Appl. Opt., 11 (2009) 11.
    連結:
  10. [17] A. Fimia, P. Acebal, S. Blaya, L. Carretero, A. Murciano, R. Madrigal, SPIE Europe Optics+ Optoelectronics, International Society for Optics and Photonics, 2009, pp. 735802-735801-735815.
    連結:
  11. [22] K. Curtis, D. Psaltis, Appl. Optics, 33 (1994) 5396-5399.
    連結:
  12. [23] N. Suzuki, Y. Tomita, Appl. Optics, 46 (2007) 6809-6814.
    連結:
  13. [26] N. Hayashida, A. Kosuda, J. Yoshinari, Jpn. J. Appl. Phys., 47 (2008) 5895-5899.
    連結:
  14. [37] P. Cheben, M.L. Calvo, Appl. Phys. Lett., 78 (2001) 1490-1492.(2008) 10-26.
    連結:
  15. [38] J.N. Israelachvili, Chemica Scripta, 25 (1985) 7-14.
    連結:
  16. [41] A. Soleimani Dorcheh, M. Abbasi, Silica aerogel; synthesis, properties and characterization, Journal of materials processing technology, 199 (2008) 10–26
    連結:
  17. [45]R.K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley New York. (1979)
    連結:
  18. [46] Juin-Yih Lai, In situ crosslinking of chitosan and formation of chitosan–silica hybrid membranes with using g-glycidoxypropyltrimethoxysilane as a crosslinking agent, Polymer 45(2004)6831–6837
    連結:
  19. [47] L. Qin, J. Chromatogr, Molecularly imprinted polymer prepared with bonded -cyclodextrin and acrylamide on functionalized silica gel for selective
    連結:
  20. [48] N. Suzuki, Y. Tomita, T. Kojima, Appl. Phys. Lett., 81 (2002) 4121-4123.
    連結:
  21. [50] C. Sanchez, M.J. Escuti, C. van Heesch, C.W.M. Bastiaansen, D.J. Broer, J. Loos, R. Nussbaumer, Adv. Funct. Mater., 15 (2005) 1623-1629.
    連結:
  22. [51] A. Łukowiak, Optical properties of SiO2–TiO2 thin film waveguides obtained bythe sol–gel method and their applications for sensing purposes., ptical Materials., 27 (2005) 1501–1505
    連結:
  23. [52]Y.Situ., Polymerization-induced has eseparation in the prepara tion of macroporous TiO2/SiO2 thin films, ramics International ., 40 (2014) 919–927
    連結:
  24. [53] J. Opt. A, Effective volume holographic structures ased on organic–inorganic photopolymer anocomposites, re Appl. Opt. 11 (2009) 024013
    連結:
  25. [54] O V Sakhno1, Surface modified ZrO2 and TiO2 nanoparticles embedded in organic photopolymers for highly effective and UV-stable volume holograms., Nanotechnology., 18 (2007) 105704
    連結:
  26. [55] S. Mallakpour, A. Barati , Efficient preparation of hybrid nanocomposite coatings based on poly(vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles Progress in Organic Coatings ., 71(2011) 391–398
    連結:
  27. [56] F. Wang, Sol–gel derived titania hybrid thin films with high refractive index, Journal of Alloys and Compounds., 486 (2009) 521–526
    連結:
  28. [57]L.Ye, Sol–gel reparation of SiO2/ TiO2 /SiO2–TiO2 broadband antireflective coating for solar cell cover glass., Solar Energy Materials & Solar Cells 111 (2013) 160–16
    連結:
  29. [58] W.R. Caseri, Polymer-TiO2 Nanocomposites, Polymer-TiO2 Nanocomposites: A Route TowardsVisually Transparent Broadband UV Filters and High Refractive Index Materials., Macromol. Mater. Eng. 2003, 288, 44–49
    連結:
  30. [5] W.R. Graver, J.W. Gladden, J.W. Eastes, Appl. Optics, 19 (1980) 1529-1536.
  31. [9] F.S. Chen, Lamacchi.Jt, D.B. Fraser, Appl. Phys. Lett., 13 (1968) 223-225.
  32. [10] P. Gunter, Journal De Physique, 44 (1983) 141-147.
  33. [11] J.O. White, M. Croningolomb, B. Fischer, A. Yariv, Appl. Phys. Lett., 40 (1982) 450-452.
  34. [13] M. Serwadczak, S. Kucharski, JSST, 37 (2006) 57-62.
  35. [14] H. Dürr, H. Bouas-Laurent, Photochromism: Molecules and Systems: Molecules and Systems, Access Online via Elsevier, 2003.
  36. [15] A. Murciano, S. Blaya, L. Carretero, M. Ulibarrena, A. Fimia, Appl. Phys. B-Lasers Opt., 81 (2005) 167-169.
  37. [18] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, A. Fimia, Applied Physics B, 74 (2002) 603-605.
  38. [19] S. Blaya, L. Carretero, R. Mallavia, A. Fimia, R.F. Madrigal, M. Ulibarrena, D. Levy, Appl. Optics, 37 (1998) 7604-7610.
  39. [20] L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, A. Fimia, Opt. Express, 12 (2004) 1780-1787.
  40. [21] A. Murciano, L. Carretero, S. Blaya, R.F. Madrigal, A. Fimia, Appl. Phys. B-Lasers Opt., 83 (2006) 619-622.
  41. [24] N. Suzuki, Y. Tomita, Appl. Optics, 43 (2004) 2125-2129.
  42. [25] Y. Tomita, N. Suzuki, K. Chikama, Optics letters, 30 (2005) 839-841.
  43. [27] Y.M. Chang, S.C. Yoon, M. Han, Opt. Mater., 30 (2007) 662-668.
  44. [28] M. Feuillade, C. Croutxe-Barghorn, L. Mager, C. Carre, A. Fort, Chem. Phys. Lett., 398 (2004) 151-156.
  45. [29] S. Lee, Y.-C. Jeong, Y. Heo, S.I. Kim, Y.-S. Choi, J.-K. Park, J. Mater. Chem., 19 (2009) 1105-1114.
  46. [30] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Access Online via Elsevier, 1990.
  47. [30] O.Kulikovska,L.M.Goldenberg,Chem.Mater.20 (2008)3528-3534.
  48. [31] R.K. Iler, Wiley, The Chemistry of Silica, 1979.
  49. [32] H. Cogan, C. Setterstrom, Chemical & Engineering News: Business, 24 (1946) 2499-2501.
  50. [33] H. Cogan, C. Setterstrom, Industrial & Engineering Chemistry, 39 (1947) 1364-1368.
  51. [34] A.B. Samui, Recent patents on materials science, 1 (2008) 74-94.
  52. [35] S. Blaya, L. Carretero, A. Fimia, R. Mallavia, R. Madrigal, R. Sastre, F. Amat-Guerri, Journal of Modern Optics, 45 (1998) 2573-2584.
  53. [36] S. Blaya, L. Carretero, R. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, Applied Physics B, 77 (2003) 639-662.
  54. [39] M. Nouri-Khezrabad, M. Braulio, V. Pandolfelli, F. Golestani-Fard, H. Rezaie, Ceramics International, (2012).
  55. [40] K. Omura, Y. Tomita, Journal of Applied Physics, 107 (2010) 023107.
  56. [42] A.M.Ebelmen,Chim.Phys.,57(1846)
  57. [43] P.Cheben, T.Belenguer,Appl.Opt, Lett.21(1996)1857
  58. [44] G.Ramos, A.Alvarez, T.Belenguer, Appl.Opt,43(2004)4018
  59. recognition of tryptophan in aqueous media, A 1187 (2008) 94–102
  60. [49] Y. Tomita, N. Suzuki, K. Chikama, Optics letters., 30 (2005) 839-841.