Title

生物可分解的聚丁二酸二丁酯及含少量丁二酸二丙酯之共聚酯/蒙脫土之奈米複合材料

Translated Titles

Biodegradable poly(butylene succinate) and its copolyesters with minor amounts of propylene succinate/montmorillonite nanocomposites

Authors

吳臣哲

Key Words

奈米複合材料 ; 等溫結晶動力學 ; 蒙脫土 ; 共聚酯 ; 聚丁二酸二丁酯 ; montmorillonite ; nanocomposites ; isothermal crystallization kinetics ; copolyester ; poly(butylene succinate)

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

陳明

Content Language

繁體中文

Chinese Abstract

本研究是將蒙脫土混摻進入高分子中為奈米複合材料,並研究它們的性質和等溫結晶。為了要改善高分子與蒙脫土(MMT)之間的相容性,由十八烷基長碳鏈(K2)改質蒙脫土,形成有機化蒙脫土,將聚丁二酸二丁酯(PBSu)以及含少量丁二酸丙酯之共聚酯(PBPSu90/10, PBPSu80/20)各別混摻含有1、3、5 wt%改質蒙脫土(MMT-K2),利用熔融混煉的方式製備奈米複合材料。研究這些生物可分解奈米複合材料的結晶與熔融行為之前,須先探討材料的物理性質,由傅立葉遠紅外線光譜儀(FT-IR)和廣角X光繞射分析儀(WAXD)的圖說明了K2有成功地改質到黏土上,蒙脫土的層間距離從1.62 nm增加到3.94 nm,從奈米複合材料的WAXD圖中可知MMT-K2的層間距離大於5.94 nm,由穿透式電子顯微鏡(TEM)觀察MMT-K2在高分子基材的分散形式,可知這些複合材料的分散型態為插層性,不是脫層型的。藉由熱重分析儀(TGA)檢測奈米複合材料的熱穩定性,複材的熱穩定隨著MMT-K2含量增加而下降。藉由動態機械分析儀(DMA)可得知熱機械性質,當含有PSu的共聚酯中MMT-K2含量為3 wt%或5 wt%時的儲存模數與純的基材相比有明顯的增強,甚至大於PBSu的儲存模數。 藉由微差式掃描熱卡儀(DSC)與偏光顯微鏡(PLM)研究MMT-K2在PBSu、PBP90/10、PBP80/20之等溫結晶行為,Avrami方程式成功地描述這些奈米複合材料之等溫結晶動力學,Avrami指數介於2.42~3.35,在BP80系列奈米複合材料中,純BP80的結晶速率比有添加改質蒙脫土快,這可以歸因於蒙脫土與高分子不相容,在BP90、B100系列奈米複合材料隨著MMT-K2添加愈多而結晶速率愈快。比較高分子在熔融混煉前和混煉後的分子量,分子量會降低所導致球晶成長速率的增加。此外加入MMT-K2影響BP80、BP90和B100的結晶結構與熔融行為很小。

English Abstract

In this study, biodegradable nanocomposites were prepared. In order to improve the compatibility between polymer and montmorillonite (MMT), the surface of MMT was organo-modified by disodium cocoamphdipropionate (K2). Then, poly(butylene succinate) (PBSu) and its copolyesters with minor amount of propylene succinate (PBPSu90/10, PBPSu80/20) were blended with 1, 3, or 5 wt% of MMT-K2, respectively, by the melt intercalation. The physical properties of these biodegradable nanocomposites were characterized before studying their crystallization and melting behaviors. The Fourier Transform Infrared spectrum and wide-angle X-ray diffraction (WAXD) pattern show that MMT was successfully modified with K2, and the interlayer distance of MMT was increased from 1.62 to 3.94 nm. The WAXD patterns of nanocomposites yield that the interlayer distance of MMT-K2 was higher than 5.94 nm. The micrographs of transmission electron microscope indicate that these nanocomposites were intercalated, not exfoliated. The results of thermogravimetric analysis revealed that the thermal stability of the resultant nanocomposites was reduced after the addition of MMT-K2. Dynamic mechanical properties of the fabricated 3wt% or 5 wt% nanocomposites of these aliphatic copolyesters showed significant enhancements in the storage modulus compared with the neat matrix, even higher than that of PBSu. The effect of MMT-K2 on the isothermal crystallization behavior of PBSu, PBPSu90/10, and PBPSu80/20 was investigated using a differential scanning calori- meter (DSC) and polarized light microscopy (PLM). The Avrami equation successfully describes the isothermal crystallization kinetics of these nanocomposites and the value of Avrami exponent was between 2.42 and 3.35. The crystallization rate of neat BP80 was faster than BP80/MMT nanocomposites. This may be ascribed to the incompatibility of BP80 with MMT. On the contrast, the crystallization rate of BP90 or B100 nanocomposites was enhanced as the amount of MMT-K2 increased. The molecular weight of neat polymer before and after the melt intercalation indicated that the reduced molecular weight resulted in the increase of the growth rate of spherulites. Besides, it was found that the incorporation of MMT-K2 has little effect on the crystalline structure as well as the melting behavior of B100, BP90, or BP80.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. 2.M. Mochizuki, M. Hirami, Structural effects on the biodegradation of aliphatic polyester, Polym. Adv. Technol., 1997, 8, 203-209.
    連結:
  2. 3.J. Yang, W. Tian, Q. Li, Y. Li, A. Cao, Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s bearing functionalizable carbonate building blocks:II. Enzymatic biodegradation and in vitro biocompatibility assay, Biomacromolecules, 2004, 5, 2258-2268.
    連結:
  3. 4.H. Pan, J. Yu, Z. Qiu, Crystallization and morphology studies of biodegradable poly(ɛ-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites, Polym. Eng. Sci., 2011, 51, 2159-2165.
    連結:
  4. 5.S. S. Ray, K. Okamoto, M. Okamoto, Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites, Macromolecules, 2003, 36, 2355-2367.
    連結:
  5. 6.S. S. Ray, K. Okamoto, M. Okamoto, New poly(butylene succinate)/layered silicate nanocomposites. II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability, J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 3160-3172.
    連結:
  6. 8.S. Komarneni, Nanocomposites, J. Mater. Chem., 1992, 2, 1219-1230.
    連結:
  7. 9.R. Chandra, R. Rustgi, Biodegradable polymers, Prog. Polym. Sci., 1998, 23, 1273-1336.
    連結:
  8. 10.R. A. Gross, B. Kalra, Biodegradable polymers for the environment, Science, 2002, 297, 803-807.
    連結:
  9. 11.U. Neumann, B. Wiege, S. Warwel, Synthesis of hydrophobic starch esters by reaction of starch with various carboxylic acid imidazolides, Starch‐Stärke, 2002, 54, 449-453.
    連結:
  10. 12.葉瑞銘, 翁暢健, 有機無機混成奈米複合材料, Chemistry, 2004, 62, 473-482.
    連結:
  11. 13.蔡宗燕, 奈米黏土-高分子複合材料之發展與應用, 工研院化工所, 2001, 126-133.
    連結:
  12. 14.S. K. Lim, J. J. Lee, S. G. Jang, S. I. Lee, K. H. Lee, H. J. Choi, I. J. Chin, Synthetic aliphatic biodegradable poly(butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics, Polym. Eng. Sci., 2011, 51, 1316-1324.
    連結:
  13. 15.F. Yang, Z. Qiu, Preparation, crystallization, and properties of biodegradable poly(butylene adipate‐co‐terephthalate)/organomodified montmorillonite nanoco- mposites, J. Appl. Polym. Sci., 2010, 119, 1426-1434.
    連結:
  14. 16.Y. Someya, Y. Sugahara, M. Shibata, Nanocomposites based on poly(butylene adipate‐co‐terephthalate) and montmorillonite, J. Appl. Polym. Sci., 2004, 95, 386-392.
    連結:
  15. 17.S. S. Ray, M. Bousmina, K. Okamoto, Structure and properties of nanocomposites based on poly(butylene succinate‐co‐adipate) and organically modified mont- morillonite, Macromol. Mater. Eng., 2005, 290, 759-768.
    連結:
  16. 18.B. Chieng, N. Ibrahim, W. Wan Yunus, Effect of organo-modified montmorill- onite on poly(butylene succinate)/poly(butylene adipate-co- terephthalate) nano- composites, eXPRESS Polym. Lett., 2010, 4, 404-414.
    連結:
  17. 19.S. Y. Hwang, E. S. Yoo, S. S. Im, Effect of the urethane group on treated clay surfaces for high-performance poly(butylene succinate)/montmorillonite nanoco- mposites, Polym. Degrad. Stab., 2009, 94, 2163-2169.
    連結:
  18. 20.D. Ratna, O. Becker, R. Krishnamurthy, G. Simon, R. Varley, Nanocomposites based on a combination of epoxy resin, hyperbranched epoxy and a layered silicate, Polymer, 2003, 44, 7449-7457.
    連結:
  19. 21.C. S. Triantafillidis, P. C. LeBaron, T. J. Pinnavaia, Homostructured mixed inorganic-organic ion clays: A new approach to epoxy polymer-exfoliated clay nanocomposites with a reduced organic modifier content, Chem. Mat., 2002, 14, 4088-4095.
    連結:
  20. 22.J. H. Park, S. C. Jana, Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites, Macromolecules, 2003, 36, 2758-2768.
    連結:
  21. 23.Y. Fukushima, S. Inagaki, Synthesis of an intercalated compound of montmori- llonite and 6-polyamide, J. Incl. Phenom., 1987, 5, 473-482.
    連結:
  22. 24.Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, One- pot synthesis of nylon 6–clay hybrid, J. Polym. Sci., Part A: Polym. Chem., 1993, 31, 1755-1758.
    連結:
  23. 25.C. Zilg, R. Thomann, R. Mulhaupt, J. Finter, Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates, Adv. Mater., 1999, 11, 49-52.
    連結:
  24. 27.Y. Lee, R. S. Porter, Double-melting behavior of poly(ether ether ketone), Macromolecules, 1987, 20, 1336-1341.
    連結:
  25. 28.Y. Lee, R. S. Porter, J. S. Lin, On the Double-melting behavior of poly(ether ether ketone), Macromolecules, 1989, 22, 1756-1760.
    連結:
  26. 29.B. S. Hsiao, K. H. Gardner, D. Q. Wu. Time-resolved X-ray study of poly(arylether ether ketone) crystallization and melting behavior: I: crystallization, Polymer, 1993, 34, 3986-3995.
    連結:
  27. 30.Z. G. Wang, B. S. Hsiao, B. B. Sauer, W. G. Kampert. The nature of secondary crystallization in poly(ethylene terephthalate), Polymer, 1999, 40, 4615-4627.
    連結:
  28. 31.N. Krüeger, H. G. Zachmann, Investigation of the melting behavior of poly(arylether ketones) by simultaneous measurements of SAXS and WAXS employing synchrotron radiation, Macromolecules, 1993, 26, 5202-5208.
    連結:
  29. 32.J. D. Hoffman, J. J. Weeks, Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene, J. Res. Nat. Bur. Stand., 1962, 66, 13-28.
    連結:
  30. 33.J. D. Hoffman, R. L. Miller, Kinetics and crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment, Polymer, 1997, 38, 3151-3212.
    連結:
  31. 34.J. D. Hoffman, G.T. Davis, JI. Jr. Lauritzen, Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, N.Y: Hannay ed. Plenum, 1976, Chap. 7.
    連結:
  32. 36.Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo ‐modified montmorillonites, J. Appl. Polym. Sci., 2003, 91, 1463-1475.
    連結:
  33. 37.T. Y. Tsai, C. K. Wen, H. J. Chuang, M. J. Lin, U. Ray, Effect of clay with different cation exchange capacity on the morpholopy and properties of poly(methyl methacrylate)/clay nanocomposites, Polym. Compos., 2009, 10, 1552-1561.
    連結:
  34. 40.I. W. Hamley, Introduction to Soft Matter. Wiley, New York. 2000, p.103.
    連結:
  35. 1.行政院環保署雙月刊第61期(91年7月)
  36. 7.唐義祥, 樓白楊, 梁多平, 聚丁二酸丁二酯/奈米高嶺土共混体系结晶及力學
  37. 性能研究, 高分子學報, 2011, No 5, 516-521.
  38. 26.G. Bodor, Stuctural investigation of polymers. Eillis Horwood Pub, Chichester England, 1991, Chapter 6.
  39. 35.W. D. Neese, Introduction to Optical Mineralogy 2nd, Oxford University Press, New York, 1991.
  40. 38.馬繼盛, 漆宗能, 李革, 胡友良, 聚丙烯/蒙脫土納米複合材料的等溫結晶研究, 高分子學報, 2001, No 5, 589-593.
  41. 39.蔡宗燕,奈米化學與科技應用,「奈米級黏土/高分子複合材料」,工業技術 研究院,化工所,2005, 135-156.