Title

以簡易金屬配位系統製備銀微/奈米結構及聚苯胺/銀複合材料

Translated Titles

Synthesis of Ag Micro/Nano Structure and Polyaniline/Ag Complexes by Simple Metallic Coordination System

Authors

鍾承恩

Key Words

PEDOT/PSS ; 導電薄膜 ; 多元醇法 ; 鹼基 ; 配位 ; 銀奈米線 ; 聚苯胺 ; Composite film ; Polyol process ; Bases ; Polyaniline ; Coordination ; Silver nanowire ; PEDOT/PSS

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

郭紹偉

Content Language

繁體中文

Chinese Abstract

傳統多元醇法製備銀奈米線需要在高溫下進行。本實驗利用多元醇法配合NaHCO3、Na2CO3、CH3COONa和NaOH四種不同的鹼基在溶液中的配位來幫助合成銀奈米結構,其先由乙二醇將銀離子還原成銀晶種,再由包覆劑聚乙烯吡咯烷酮(Polyvinylpyrrolidone)保護銀晶種,然後利用鹼基與銀離子的配位來幫助銀晶種生長成銀奈米線,這種方法在可以在較低溫下進行,而且也可以量產,對工業上有節省成本的效益。我們可以由SEM圖看到銀離子在不同鹼基的作用下,銀會有不一樣的形貌;在XRD分析中,可以證明生成的產物為銀,沒有其它銀的其它化合物產生,並可以證明其銀的生長方向為[110];另外在UV吸收光譜分析中,由於銀奈米結構會有表面電漿共振的現象,因此可以看到吸收位置在410~440 nm處有銀奈米顆粒的峰值還有在350 nm處銀奈米線的峰值,表示有銀奈米顆粒及銀奈米線的生成;最後在TEM圖中,可以看到加入鹼基前後,銀從銀晶種到連續性結構的成長過程。 聚苯胺主鏈上氮原子的孤電子對(lone pair)可以抓住銀離子形成配位鍵結,同時聚苯胺上的-NH=具有還原的能力,可以將配位在氮原子上的銀離子還原成由聚苯胺的形貌來決定的銀微/奈米結構。本實驗利用簡單、不須摻雜酸的一體成型的聚合方式合成聚苯胺/銀複合材料,由SEM圖可以看到聚苯胺在與不同含量的醋酸銀共聚下,可以得到線狀或片狀的銀微結構,然而在快速攪拌速率下可以得到顆粒的銀微結構;在XRD分析中可以看到聚苯胺的峰值會隨著醋酸銀含量的增加而降低,表示銀離子在系統中會阻礙聚苯胺的聚合;在XPS分析中,可以看到-NH-氧化成-N=的峰值,證明聚苯胺及銀離子的作用。 將得到的聚苯胺/銀複合材料混摻在水溶性PEDOT/PSS薄膜上,可以得到導電度範圍在1~100 S/cm並且具回收性的導電材料,其中提升的導電度為聚苯胺所貢獻。

English Abstract

In this study, A method to synthesize silver nanowires at relatively low temperature is demonstrated by using bases to attract silver ions and help silver ions to reduce to silver in polyol process. Here different bases in polyol process are asisted to the growth of silver nanowires, where bases play a role of the coordinate ion which grasp silver ions. In this case, ethylene glycol(EG) reduce silver ions to silver seeds first, then adding polyvinylpyrrolidone(PVP) to prevent silver seeds aggregating, finally adding bases to coordinate silver ions to help silver nanowires growing. SEM images indicate the different structures of silver in different bases. And XRD datas prove no other silver compounds is generated in the experiment. Silver nanostructures can be determined by UV-vis spectra because the surface plasmon resonance. We can see the UV-vis spectra of silver nanowires at 350 nm, and silver nanoparticle at 410~440 nm. The TEM images show the growth process of silver after adding the bases. Because of the reductive ability of –NH and the ligand bond between lone pair of nitrogen and silver ions, we can obtain nano- and microstructure of silver with special morphologies by synthesizing polyaniline and Ag at the same time. We developed a simple self-assembly polymerization method for the synthesis of Polyaniline/Ag composite without doping any acid reagent. SEM images indicate that the morphology of Ag depended on concerntration of Ag is wire or sheet. And SEM images also show that the morphology of Ag is micro-particle when the system of polymerization is under rapid stirring. XRD images indicate that the peaks of polyanilne become lower as the amount of Ag+ increase, which means Ag+ inhibit the polymerization of polyaniline. XPS images indicate that the oxidation of –NH- to –N= proves the connection between Polyaniline and Ag+. By blending the polyaniline/silver composite with PEDOT/PSS. We can obtain a recyclable conductive film of PEDOT/PSS where the polyaniline and silver are dispersed. The conductivity of the PEDOT/PSS is about 1~100 S/cm which is contributed by polyaniline.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. 1. Chen, C. L.; Furusho, H.; Mori, H. Nanotechnology, 2009, 20, 405605
    連結:
  2. 3. Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. Nano Lett. 2009, 9, 3550-3554
    連結:
  3. 5. Xu, X. J.; Fei, G. T.; Wang, X. W.; Jin, Z.; Yu, W. H.; Zhang, L. D. Mater. Lett. 2007, 61, 19
    連結:
  4. 6. Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Chem. Mater. 2001, 13, 2753
    連結:
  5. 7. Zhou, Y.; Yu, S. H.; Cui, X. P.; Wang, C. Y.; Chen, Z. Y. Chem. Mater. 1999, 11, 545-546
    連結:
  6. 9. Zhou, Y.; Yu, S. H.; Wang, C. Y.; Li, X. G.; Zhu, Y. R.; Chen, Z. Y. Adv. Mater. 1999, 11, 850-852
    連結:
  7. 17. Letherby, H. J. Chem. Soc., 1862, 15, 161-163
    連結:
  8. 18. Green, A. G.; Woodhead, A. E. J. Chem. Soc., Trans. 1910, 97, 2388-2403
    連結:
  9. 19. Green, A. G.; Woodhead, A. E. J. Chem. Soc., Trans. 1912, 101, 1117-1123
    連結:
  10. 22. Stejskal, J.; Kratochvil, P. Polymer 1996, 37, 367-369
    連結:
  11. 29. Huang, J.; Kaner, R. B. Angew. Chem. Int. Ed. 2004, 43, 5817-5821
    連結:
  12. 30. Stejskal, J.; Sapurina, I.; Trchova, M. Prog. Polym. Sci. 2010, 35, 1420-1481
    連結:
  13. 32. Heeger, A. J. J. Phys. Chem. B 2001, 105, 8475-8491
    連結:
  14. 34. Smith, J. A.; Josowicz, M.; Janata, J. J. Electrochem. Soc. 2003, 150, E384-E388
    連結:
  15. 42. Chaudhari, H. K.; Kelkar, D. S. J. Appl. Polym. Sci. 1996, 62, 15-18
    連結:
  16. 44. Zhu, M.; Chen, P.; Liu, M. Chin. Sci. Bull. 2013, 58, 84-91
    連結:
  17. 2. Zhang, L.; Zhang, P.; Fang, Y. Anal. Chim. Acta. 2007, 591, 214-218
  18. 4. Kazeminezhad, I.; Barnes, A. C.; Holbrey, J. D.; Seddon, K. R.; Schwarzacher, W. Appl. Phys. A 2007, 86, 373-375
  19. 8. Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.; Song, X. Chem. Commun. 2009, 1130-1132
  20. 10. Liu, S.; Yue, J.; Gedanken, A. Adv. Mater. 2001, 13, 656-658
  21. 11. Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun. 2001, 617-618
  22. 12. Sun, Y.; Yin, Y.; Mayers, B. T.; Herrcks, T.; Xia, Y. Chem. Mater. 2002, 14, 4736-4745
  23. 13. Wiley, B.; Sun, Y.; Xia, Y. Acc. Chem. Res. 2007, 40, 1067-1076
  24. 14. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668-677
  25. 15. 戴安邦等。《配位化學》,《無機化學叢書》第十二卷。北京:科學出版社,1987年10月。
  26. 16. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem. Commun. 1977, 16, 578-580
  27. 20. Surville, R. D.; Jozefowicz, M.; Yu, L. T.; Pepichon, J.; Buvet R. Electrochim. Acta. 1968, 13, 1451-1458
  28. 21. Macdiarmid, A. G.; Chiang, J. C.; Halpern, M.; Huang, W. S.; Mu, S. L.; Somasir, N. L. D. Mol. Cryst. Liq. Cryst, 1985, 121, 173-180
  29. 23. Mohilner, D. M.; Adams, R. N.; Argersinger, W. J. J. Am. Chem. Soc. 1962, 84, 3618-3622
  30. 24. Bacon, J.; Adams, R. N. J. Am. Chem. Soc. 1968, 90(24) , 6596-6599
  31. 25. Mattoso, L. H. C.; Macdiarmid, A. G.; Epstein, A. J. Synth. Met. 1994, 68, 1-11
  32. 26. Stejskal, J.; Riede, A.; Hlavata, D.; Prokes, J.; Helmstedt, M.; Holler, P. Synth. Met. 1998, 96, 55-61
  33. 27. Adams, P. N.; Laughlin, P. J.; Monkman, A. P.; Kenwright, A. M. Polymer 1996, 37, 3411-3417
  34. 28. Huang, J.; Virji, S.; Weiller, B. H.; Kaner, R. B. J. Am. Chem. Soc. 2003, 125, 314-315
  35. 31. Dhand, C.; Das, M.; Datta, M.; Malhotra, B. D. Biosens. Bioelectron. 2011, 26, 2811−2821
  36. 33. Li, S.; Xu, P.; Ren, Z.; Zhang, B.; Du, Y.; Han, X.; Mack, N. H.; Wang, H. L. ACS Appl. Mater. Interfaces 2013, 5, 49-54
  37. 35. Sedenkova, I.; Trchova, M.; Stejskal, J.; Prokes, J. ACS Appl. Mater. Interfaces 2009, 1, 1906-1912
  38. 36. He, Y.; Han, X.; Chen, D.; Kang, L.; Jin, W.; Qiang, R.; Xu. P.; Du, Y. RSC Adv. 2014, 4, 7202-7206
  39. 37. Yan, J.; Han, X.; He, J.; Kang, L.; Zhang, B.; Du, Y.; Zhao, H.; Dong, C.; Wang, H. L.; Xu, P. ACS Appl. Mater. Interfaces 2012, 4, 2752-2756
  40. 38. O’Mullane, A. P.; Dale, S. E.; Macpherson, J. V.; Unwin, P. R. Chem. Commun. 2004, 4, 1606-1607
  41. 39. Li, H. S.; Josoxicz, M.; Baer, D. R.; Engelhard, M. H.; Janata, J. J. Electrochem. Soc. 1995, 142, 798-805
  42. 40. Kakis, F. J.; Fetizon, M.; Douchkine, N.; Golfier, M.; Mourgues, P.; Prange, T. J. Org. Chem. 1974, 39, 523-533
  43. 41. Olson, L. P.; Whitcomb, D. R.; Rajeswaran, M.; Blanton, T. N.; Stwertka, B. J. Chem. Mater. 2006, 18, 1667-1674
  44. 43. Kang, S. Y.; Kim, K. Langmuir 1998, 14, 226–230.
  45. 45. Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. J. Phys. Chem. C 2013, 207, 19346−19352
  46. 46. Gao, Y.; Shan, D.; Cao, F.; Gong, J.; Li, X.; Ma, H.; Su, Z.; Qu, L. J. Phys. Chem. C 2009, 113, 15175-15181
  47. 47. Mondal, S.; Rana, U.; Malik, S. ACS Appl. Mater. Interfaces 2015, 7, 10457−10465