Title

中溫固態氧化物燃料電池披覆式複合陰極之製備及性能研究

Translated Titles

Preparation and characterization of infiltration type composite cathode for intermediate temperature solid oxide fuel cells

Authors

蕭棠文

Key Words

PrBaCo2O5+δ (PBC) ; Ce0.9Gd0.1O2−δ (CGO) ; Sm0.5Sr0.5CoO3−δ (SSC) ; 界面阻抗 ; 披覆 ; 陰極 ; Ce0.9Gd0.1O2−δ (CGO) ; Sm0.5Sr0.5CoO3−δ (SSC) ; PrBaCo2O5+δ (PBC) ; Area specific resistance ; Infiltration ; Cathodes

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

黃炳淮

Content Language

繁體中文

Chinese Abstract

本研究以披覆式製備兩種類型的電極,其一為以混合導體材料做為骨架,另一為以離子導體作為骨架。混合導體骨架類型的電極主要披覆PrBaCo2O5+δ (PBC) 或Ce0.9Gd0.1O2-δ (CGO) 在Sm0.5Sr0.5CoO3−δ (SSC) 陰極骨架上,而離子導體骨架類型的電極主要披覆Sm0.5Sr0.5CoO3−δ (SSC) 或PrBaCo2O5+δ (PBC)在Ce0.9Gd0.1O2-δ (CGO) 陰極骨架上,披覆的溶液以金屬硝酸鹽類作為前驅物並加入乙醇作為潤濕劑。結果顯示隨著披覆材料的含量增加,界面阻抗(area specific resistance, ASR)值先減小再增加,而SSC形成的陰極骨架中披覆15 wt.% PBC和10 wt.% CGO其界面阻抗值相對較低,在量測溫度650ºC空氣氣氛下,SSC形成的陰極骨架中披覆15 wt.% PBC的界面阻抗值達0.0341 Ω cm2,而披覆10 wt.% CGO的界面阻抗值達0.107 Ω cm2。另外在離子導體骨架類型,CGO形成的陰極骨架中披覆50 wt.% SSC和50 wt.% PBC其界面阻抗值相對較低,在量測溫度650ºC空氣氣氛下,在50 wt.% SSC和50 wt.% PBC披覆式陰極分別獲得界面阻抗值達0.0227和0.0136 Ω cm2。然而PBC披覆在CGO陰極骨架上為較優越的陰極表現,因PBC對氧具有快速的表面交換速率和離子擴散的特性,並且CGO陰極骨架使電極與電解質間有良好的鍵結。

English Abstract

Two types of electrodes are constructed by the infiltration method in this study. One is mixed conducting backbone type, while the other is ionic conducting backbone type. Mixed conducting backbone type is infiltrating PrBaCo2O5+δ (PBC) and Ce0.9Gd0.1O2-δ (CGO) into Sm0.5Sr0.5CoO3−δ (SSC) backbones respectively, while the ionic conducting backbone type is infiltrating Sm0.5Sr0.5CoO3−δ (SSC) and PrBaCo2O5+δ (PBC) into Ce0.9Gd0.1O2-δ (CGO) backbones respectively. Infiltrated solutions are prepared using metal nitrates as precursors and ethanol as wetting agent. The results indicate that area specific resistance (ASR) value decreases and then increases with infiltrate loading and minimum values occur at 15 wt.% and 10 wt.% loading for PBC and CGO infiltrated on SSC backbones, respectively. In particular ASR values as low as 0.0341 and 0.107 Ω cm2 are obtained at 650ºC in air for 15 wt.% PBC and 10 wt.% CGO infiltrated cathodes, respectively. In ionic conducting backbone type, ASR minimum values occur at 50 wt.% loading for both SSC and PBC infiltrates on CGO backbones. In particular ASR values as low as 0.0227 and 0.0136 Ω cm2 are obtained at 650ºC in humidified air for 50 wt.% SSC and 50 wt.% PBC infiltrated cathodes, respectively. The superior cathode performance of PBC infiltrated into CGO backbones is due to its faster surface exchange rate and ion diffusivity of oxygen and good bonding between the electrode and electrolyte.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. [1] O. Yamamoto, Electrochim. Acta, 45 (2000) 2423-2435.
    連結:
  2. [5] S. P. Jiang, Int. J. Hydrogen Energy, 37 (2012) 449-470.
    連結:
  3. [6] C. Y. Fu, C. L. Chang, C. S. Hsu, B. H. Hwang, Mater. Chem. Phys., 91 (2005) 28-35.
    連結:
  4. [7] C. S. Hsu, B. H. Hwang, J. Electrochem. Soc., 153 (2006) A1478-A1483.
    連結:
  5. [9] C. L. Chang, C. S. Hsu, B. H. Hwang, J. Power Sources, 179 (2008) 734-738.
    連結:
  6. [10] C. H. Chen, C. L. Chang, B. H. Hwang, Mater. Chem. Phys., 115 (2009) 478-482.
    連結:
  7. [13] W. Nernst, Zeitschrift für Elektrochemie, 6 (1899) 41-43.
    連結:
  8. [14] E. Baur, H. Preis, Zeitschrift für Elektrochemie, 43 (1937) 727-732.
    連結:
  9. [15] M. C. Williams, Fuel Cells, (2011) 11-27.
    連結:
  10. [18] B. C. H. Steele, Solid State Ionics, 86-88 (1996) 1223-1234.
    連結:
  11. [20] N. Q. Minh, J. Am. Ceram. Soc., 76 (1993) 563-588.
    連結:
  12. [21] S. B. Adler, Chem. Rev., 104 (2004) 4791-4843.
    連結:
  13. [23] V. Grover, A. K. Tyagi, Mater. Res. Bull., 39 (2004) 859-866.
    連結:
  14. [25] H. Inaba, H. Tagawa, Solid State Ionics, 83 (1996) 1-16.
    連結:
  15. [26] J. A. Kilner, R. J. Brook, Solid State Ionics, 6 (1982) 237-252.
    連結:
  16. [27] S. P. Jiang, W. Wang, Solid State Ionics, 176 (2005) 1351-1357.
    連結:
  17. [28] J. Chen, F. Liang, L. Liu, S. Jiang, B. Chi, J. Pu, J. Li, J. Power Sources, 183 (2008) 586-589.
    連結:
  18. [30] W. Zhu, D. Ding, C. Xia, Electrochem. Solid-State Lett., 11 (2008) B83-B86.
    連結:
  19. [31] Z. Jiang, C. Xia, F. Chen, Electrochim. Acta, 55 (2010) 3595-3605.
    連結:
  20. [32] V. M. Goldschmidt, Naturwissenschaften, 14 (1926) 477-485.
    連結:
  21. [33] F. D. Bloss, Crystallography and Crystal Chemistry: An Introduction, Holt Rinehart and Winston, 1971.
    連結:
  22. [45] H. Zhang, F. Zhao, F. Chen, C. Xia, Solid State Ionics, 192 (2011) 591-594.
    連結:
  23. [2] I. Park, J. Choi, H. Lee, D. Shin, Ceram. Int., 39 (2013) 5561-5569.
  24. [3] C. Zhu, X. Liu, C. Yi, L. Pei, D. Wang, D. Yan, K. Yao, T. Lü, W. Su, J. Power Sources, 195 (2010) 3504-3507.
  25. [4] F. Zhao, R. Peng, C. Xia, Mater. Res. Bull., 43 (2008) 370-376.
  26. [8] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics, 149 (2002) 11-19.
  27. [11] Y. Wang, H. Zhang, F. Chen, C. Xia, J. Power Sources, 203 (2012) 34-41.
  28. [12] W. R. Grove, Philos. Mag., 14 (1839) 127-130.
  29. [16] K. Kordesch, G. Simader, Fuel Cells and Their Applications, Wiley-VCH, 1996.
  30. [17] D. Y. Wang, A. S. Nowick, J. Electrochem. Soc., 126 (1979) 1155-1165.
  31. [19] S. M. Haile, Acta Mater., 51 (2003) 5981-6000.
  32. [22] Y. Wang, T. Mori, J. G. Li, J. Drennan, J. Eur. Ceram. Soc., 25 (2005) 949-956.
  33. [24] S. Bebelis, V. Kournoutis, A. Mai, F. Tietz, Solid State Ionics, 179 (2008) 1080-1084.
  34. [29] D. Ding, X. Li, S. Y. Lai, K. Gerdes, M. Liu, Energy Environ. Sci., 7 (2014) 552-575.
  35. [34] H. Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Solid State Ionics, 100 (1997) 283-288.
  36. [35] T. C. Yeh, J. L. Routbort, T. O. Mason, Solid State Ionics, 232 (2013) 138-143.
  37. [36] K. Zhang, L. Ge, R. Ran, Z. Shao, S. Liu, Acta Mater., 56 (2008) 4876-4889.
  38. [37] A. A. Taskin, A. N. Lavrov, Y. Ando, Appl. Phys. Lett., 86 (2005) 091910-1-09191-3.
  39. [38] G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, C. A. Mims, J. Mater. Chem., 17 (2007) 2500-2505.
  40. [39] A. J. Bard, L. R. Faulkener, Electrochemical Methods- Fundamental and Applications, Wiley, 2001.
  41. [40] Y. Guo, D. Chen, H. Shi, R. Ran, Z. Shao, Electrochim. Acta, 56 (2011) 2870-2876.
  42. [41] T. Ishihara, S. Fukui, H. Nishiguchi, Y. Takita, J. Electrochem. Soc., 149 (2002) A823-A828.
  43. [42] Y. P. Fu, C. H. Li, S. H. Hu, J. Electrochem. Soc., 159 (2012) B629-B634.
  44. [43] J. D. Nicholas, L. Wang, A. V. Call, S. A. Barnett, Phys. Chem. Chem. Phys., 14 (2012) 15379-15392.
  45. [44] F. Wang, D. Chen, Z. Shao, J. Power Sources, 216 (2012) 208-215.
  46. [46] F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, J. Power Sources, 185 (2008) 13-18.
  47. [47] S. Mimuro, S. Shibako, Y. Oyama, K. Kobayashi, T. Higuchi, S. Shin, S. Yamaguchi, Solid State Ionics, 178 (2007) 641-647.
  48. [48] H. Hayashi, M. Kanoh, C. J. Quan, H. Inaba, S. Wang, M. Dokiya, H. Tagawa, Solid State Ionics, 132 (2000) 227-233.