Title

Zn(S,O)和CZTSe的相互擴散現象研究及其在太陽電池之應用

Translated Titles

An interdiffusion study of a Zn(S,O)/CZTSe bilayer structure for photovoltaic applications

Authors

曾宗義

Key Words

濺鍍法 ; 界面擴散 ; Zn(S,O) ; CZTSe ; sputtering ; interdiffusion ; Zn(S,O) ; CZTSe

PublicationName

中山大學材料與光電科學學系研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

曾百亨

Content Language

繁體中文

Chinese Abstract

本實驗先嘗試利用不同方式製作ZnS薄膜後再摻入O形成ZnS1-xOx(簡稱Zn(S,O))薄膜,最後選定濺鍍法為最好方式,以濺鍍法製作出ZnS薄膜並用XRD確認為單一相後,再摻入氧氣其比例為PO2/Ptotal =1%來形成ZnS1-xOx薄膜並估算x值約為0.2。 鍍製好Zn(S,O)後再將此薄膜取代CdS來鍍製在Cu2ZnSnSe4 (簡稱CZTSe)上,由SEM圖可看出接面間的附著性並不好且從GIXRD圖上來看並沒有明顯的界面擴散,為了改善界面擴散程度及附著性,在充氮環境下分別在400oC及500oC環境下退火兩分鐘,實驗結果從SEM圖得知其附著性皆比退火前好,從XRD圖發現在500oC下Zn(S,O)的峰值消失,而在400oC下Zn(S,O)的峰值仍存在,但從GIXRD圖上來看,界面擴散程度並無明顯增加。

English Abstract

This experiment tried to use multiple methods to make ZnS thin film and dope O to form ZnS1-xOx (Zn(S,O)) thin film, and finally selected Reactive Sputtering as the most fittable method. Form ZnS thin film formed by Reactive Sputtering with XRD and assure if the film was single phase or not. Next dope the oxygen with proportion PO2/Ptotal =1% to form ZnS1-xOx thin film and estimated the value of x was 0.2 approximately. After Zn(S,O) thin film formed, replaced CdS to form on Cu2ZnSnSe4 (CZTSe). The result revealed the adhesion was not good observed from SEM figure and the interdiffusion was not obvious observed from GIXRD figure. To improve the scale of interdiffusion and adhesion, anneal the factor for two minutes on 400oC and 500oC separately. The result revealed the adhesion was better than before annealing on SEM gragh, the peak value of Zn(S,O) disappeared on 500oC, but the peak value of Zn(S,O) existed on 400oC. However, the scale of interdiffusion did not broaden apparently from GIXRD figure.

Topic Category 工學院 > 材料與光電科學學系研究所
工程學 > 電機工程
Reference
  1. [2] Y. Zhao, C. Burda, “Development of plasmonic semiconductor nanomaterials with copper chalcegenides for a future with sustainable energy materials”, Energy Environ Sciences, 5, 5564, 2012.
    連結:
  2. [3] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells” , Science, 345, 542, 2014.
    連結:
  3. [4] Q. Guo, H. W. Hillhouse, R. Agrawal, “Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells”, Journal of the American Chemical Society, 131, 11672, 2009.
    連結:
  4. [5] S. Sharbati, J. R. Sites, “Impact of the Band Offset for n-Zn(O,S)/p-Cu(In,Ga)Se2 Solar Cells”, IEEE Journal of Photovoltaics, 4, 697, 2014.
    連結:
  5. [6] T. Ericson, J. J. Scragg, A. Hultqvist, J. T. Watjen, P. Szaniawski, T. Torndahl, C. P. Bjorkman, “Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for Cu2ZnSnS4 Solar Cells”, IEEE Journal of Photovoltaics, 4, 465, 2014.
    連結:
  6. [7] Y. M. Chang, H. W. Su, Y. Z. Zhu, G. D. Chen, “Band-gap bowing coefficients in large size-mismatched II-VI alloys: first-principles calculations”, Physical Review B, 74, 233202, 2006.
    連結:
  7. [8] C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, L. Stolt, “Zn(O,S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient”, Journal of Applied Physics, 100, 44506, 2006.
    連結:
  8. [9] T. K. Todorov, K. B. Reuter, D. B. Mitzi, “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber”, Advanced Materials, 22, E156, 2010.
    連結:
  9. [11] K. C. Sharma, Y. A. Chang, “The S-Zn (sulfur-zinc) system”, Journal of Phase Equilibria, 17, 261, 1996.
    連結:
  10. [12] S. K. Pandey, S. Pandey, V. Parashar, R. S. Yadav, G. K. Mehrotraa, A. C. Pandey, “Bandgap engineering of colloidal zinc oxysulfide via lattice substitution with sulfur”, nanoscale, 6, 1062, 2014.
    連結:
  11. [13] X. Wang, J. Shi, Z. Feng, M. Li, C. Li, “Visible emission characteristics from different defects of ZnS nanocrystals”, Physical Chemistry Chemical Physics, 13, 4715, 2011.
    連結:
  12. [14] Y. Z. Zhu and G. D. Chen, “Band-gap bowing coefficients in large size-mismatched II-VI alloys: first-principles calculations”, Physical Review B, 74, 233202, 2006.
    連結:
  13. [15] C. P. Bjӧrkman, J. Malmstrӧm, T. Tӧrndahl, M. Edoff, “Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-Type Nitrogen Doping”, Physical Review Letters, 97, 146403, 2006.
    連結:
  14. [16] B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. Krämer, C. Wang, “Structural properties and bandgap bowing of ZnO1−xSx thin films deposited by reactive sputtering”, Applied physics letters, 85, 4929, 2004.
    連結:
  15. [17] A. Halbe, G. Housser, M. Gardner, T. Groves, P. Haldar, “Evaluation of Reactive Sputtering of ZnS in Ar-O2 Environment as a Pathway to Zn(O,S) Thin-Films”, IEEE Photovoltaic Specialist Conference, 1972, 2013.
    連結:
  16. [18] K. Ramanathan, J. Mann, S. Glynn, S. Christensen, J. Pankow, J. Li, J. Scharf, L. Mansfield, M. Contreras, R. Noufi, “A Comparative Study of Zn(O,S) Buffer Layers and CIGS Solar Cells Fabricated by CBD, ALD, and Sputtering”, IEEE Photovoltaic Specialists Conference, 2012.
    連結:
  17. [19] Y.-Z. Yoo, Zheng-Wu Jin, T. Chikyow, T. Fukumura, M. Kawasaki, H. Koinuma, “S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method”, Applied Physics Letters, 81, 3798, 2002.
    連結:
  18. [20] T. Hildebrandt, N. Loones, M. Bouttemy, J. Vigneron, A. Etcheberry, D. Lincot, N. Naghavi1, “Search For New Bath Formulations Of Zn(S,O,OH) Buffer Layer To Outperform Record Performances Of CdS-based CIGSe Solar Cells”, IEEE Photovoltaic Specialist Conference, 1114, 2013.
    連結:
  19. [21] C. Hubert, N. Naghavi, B. Canava, A. Etcheberry, D. Lincot, “Thermodynamic and experimental study of chemical bath deposition of Zn(S,O,OH) buffer layers in basic aqueous ammonia solutions. Cell results with electrodeposited CuIn(S,Se)2 absorbers”, Thin Solid Films, 515, 6032, 2007.
    連結:
  20. [22] M. A. Contreras, T. Nakada, M. Hongo, A. O. Pudov, J. R. Sites, “ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo SOLAR CELL WITH 18.6% EFFICIENCY”, 3rd World Conference on Photovoltaic Energy Conversion, 1, 570, 2003.
    連結:
  21. [24] N. Satoshi, M. Tsuyoshi, W. Takahiro, “Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4”, Japanese Journal of Applied Physics, 49, 121203, 2010.
    連結:
  22. [25] S. Chen, X. G. Gong, A. Walsh, H. W. Su, “Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights”, Applied Physics Letters, 94, 41903, 2009.
    連結:
  23. [26] S. Chen, L. W. Wang, A. Walsh, X. G. Gong, H. W. Su, “Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells”, Applied Physics Letters, 101, 223901, 2012.
    連結:
  24. [27] G. Brammertz, M. Buffière, S. Oueslati, H. ElAnzeery, K. Ben Messaoud, S. Sahayaraj, C. Köble, M. Meuris, and J. Poortmans, “Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells”, Applied Physics Letters, 103, 163904, 2013.
    連結:
  25. [28] M. Tsega, D. H. Kuo, “Defects and Its Effects on Properties of Cu-Deficient Cu2ZnSnSe4 Bulks with Different Zn/Sn Ratios”, Applied Physics Express, 5, 091201, 2012.
    連結:
  26. [29] S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. K. Todorov, D. B. Mitzi, “Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency”, Energy & Environmental Science, 5, 7060, 2012.
    連結:
  27. [30] M. Ganchev, J. Iljina, L. Kaupmees, T. Raadik, O. Volobujeva, A. Mere, M. Altosaar, J. Raudoja, E. Mellikov, “Phase composition of selenized Cu2ZnSnSe4 thin films determined by X-ray diffraction and Raman spectroscopy”, Thin Solid Films, 519, 7394, 2011.
    連結:
  28. [31] S. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong, J. H. Yun, “Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values”, Applied Physics Letters, 97, 21905, 2010.
    連結:
  29. [32] N. B. M. Amiri, A. Postnikov, “Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: Similarities and differences in lattice vibration modes”, Journal of Applied Physics, 112, 033719, 2012.
    連結:
  30. [34] 王士豪,Cu2ZnSn(S,Se)4薄膜製程之研究,國立中山大學材料科學研究所碩士論文,2014。
    連結:
  31. [35] I. C. Ndukwe, “Solution growth, characterization and applications of zinc
    連結:
  32. sulphide thin films”, Solar Energy Materials and Solar Cells, 40, 123, 1996.
    連結:
  33. [36] K. X. Steirer, R. L. Garris, C. Beall, “Photoelectron Spectroscopy, and Photovoltaic Device Study of Cu2ZnSnSe4 and ZnOxS1-x Buffer Layer Interface”, IEEE Photovoltaic Specialist Conference, 847, 2014.
    連結:
  34. [37] D. H. Hwang, J. H. Ahn, K. N. Hui, K. S. Hui, Y. G. Son, “Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering”, Nanoscale Research Letters, 7, 26, 2012.
    連結:
  35. [1] “Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis”, 2012.
  36. [10] http://en.wikipedia.org/wiki/Zinc_sulfide
  37. [23] R. Klenk, A. Steigert, P. Gerhardt, F. Hergert, C. A. Kaufmann, I. Lauermann, M. Oertel, P. Pistor, S. Zweigart, M. C. LuxSteiner, “Sputtered Zn(O,S): A Promising Approach to Dry Inline Fabrication of Cd-free CIGS Modules”, Photovoltaic Specialist Conference, 959, 2014.
  38. [33] 高千惠,Cu2ZnSnSe4薄膜之快速硒化製程研究,國立中山大學材料科學研究所碩士論文,2012。