Title

以快速製程製作焦電元件於綠能之應用

Translated Titles

Pyroelectric Cells Fabricated by a Rapid Process for Green Energy Applications

Authors

邱景志

Key Words

綠色能源 ; 氧化鋅 ; 焦電效應 ; 二氧化碳雷射退火 ; 快速製程 ; Green energy ; Zinc oxide ; Pyroelectric effect ; CO2 laser annealing ; Rapid process

PublicationName

虎尾科技大學機械設計工程研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

蕭俊卿

Content Language

繁體中文

Chinese Abstract

增加焦電層之時變溫度率可有效提升焦電元件之電性輸出。本研究先以有限元素分析焦電層結構設計與時變溫度率之影響性,並以一快速氧化鋅厚膜製程製作焦電獵能元件,主要以氣膠沉積法搭配陰影遮罩製作多層式氧化鋅厚膜結構,並以二氧化碳雷射進行快速退火與爐管退火相互比較。由模擬結果得知,部分覆蓋型焦電層之孔槽寬度1μm及深度15μm時,與全覆蓋型焦電層相比,其時變溫度率提升約24.79%,因此具孔槽結構之焦電層,可有效地提升時變溫度率。實驗結果得知,具三維結構之部分覆蓋型氧化鋅焦電獵能元件與全覆蓋型氧化鋅焦電獵能元件,於溫度200℃及週期36秒下,其電流、電荷及開路功率之百分比差異值分別為534.87%、532.42%及563.57%。以氣膠沉積之氧化鋅焦電層於退火後呈現多孔隙結構,此多孔隙焦電層結合類梳狀三維結構,因表面積增加,使熱接觸面積也大幅提升。以二氧化碳雷射退火製作焦電獵能元件,其輸出電性與高溫爐管退火相接近,而時間僅為高溫爐管退火的1/15,可證明本研究之快速氧化鋅厚膜製程能於短時間內製作出品質優良及輸出電性佳之氧化鋅焦電獵能元件。

English Abstract

Increasing temperature variation rates in pyroelectric layers can effectively enhance the electrical outputs of pyroelectric devices. In the present study, the structures of pyroelectric layers were designed for improving the temperature variation rate by finite element method. An aerosol deposition (AD) rapid process with the shadow mask method, the furnace and the laser annealing was applied for depositing a three dimensional ZnO film on the silicon substrate and applying to pyroelectric generators. In the simulation results, the partially covered type with a 1μm trench width and a 15μm trench deep could improve the temperature variation rate about 24.79% than the fully covered type. Therefore, the trench structure in pyroelectric layers is useful to ameliorate the temperature variation rate. In the experimental results, the partially covered type with the three dimensional ZnO layers under the conditions of 200℃ temperature and 36s period had a higher current, charge and open power than the fully covered type about 534.87%、532.42%及563.57% respectively. The ZnO layers with the annealing process appeared a porous structure which increased the surface area and the thermal contact area. The performances of ZnO films treated with the laser annealing approached to that with the furnace annealing. The furnace annealing was fifteen times the duration of laser annealing. Hence, the AD rapid process can deposit ZnO thick films with high performances, and then fabricate pryroelectric generators with high electrical outputs.

Topic Category 工程學院 > 機械設計工程研究所
工程學 > 機械工程
Reference
  1. [6]Sze, S. M., 1994, semiconductor sensor, John Wiley & Sons, Inc,
    連結:
  2. [7]林宜勳,2010,“表面型熱電偶之量測與應用”,國立台北科技大學機電整合研究所碩士論文。
    連結:
  3. [14]Rogalski, A., 2002, “Infrared detectors: an overview”, Infrared Physics & Technology, 43, 3, pp. 187-210.
    連結:
  4. [15]Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics: An Introduction, Prentice-Hall International.
    連結:
  5. [16]Muller, M., Budde, W., Gottfried, A., Huebel, R., Jahne, R., and Kuck, H., 1996, “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor”, Sensors and Actuators A: Physical, 54, 19, pp. 601-605.
    連結:
  6. [17]Lenggenhager, R., Baltes, H., Peer, J., and Forster, M., 1992, “CMOS Thermoelectric Infrared Sensors”, IEEE Electron Device Letters, 13, 9, pp. 454-456.
    連結:
  7. [19]Rogalski, A., 2001, “Infrared detectors at the beginning of the next millennium”, Opto-Electronics Review, 9, 2, pp. 173-187.
    連結:
  8. [20]Whatmore, R. W., 1986, “Pyroelectric devices and materials”, Reports on Progress in Physics, 49, 12, pp. 1335-1386.
    連結:
  9. [21]Pham, L., Tjhen, C., Ye, W., and Polla, D. L., 1994, “Surfacemicromachined Pyroelectric Infrared Imaging Array with Vertically Integrated Signal Processzng Circuitry”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41, 4, pp. 552-555.
    連結:
  10. [22]Li, B., 2004, “Design and simulation of an uncooled double-cantilever microbolometer with the potential for ~mK NETD”, Sensors and Actuators A: Physical, 112, 2-3, pp. 351-359.
    連結:
  11. [23]Muralt, P., 2001, “Micromachined infrared detectors based on pyroelectric thin films”, Reports on Progress in Physics, 64, 10, pp. 1339-1388.
    連結:
  12. [24]Ho, JJ., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Ju, M. S., Huang, S. B., K. H., Wu, and Chen, C. Y., 1999, “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure”, IEEE Transactions on Electron devices, 46, 12, pp. 2289-2294.
    連結:
  13. [25]Feng, C. S., and Xu, P. M., 1999, “The detection mechanism of LiTaO type II pyroelectric detectors: I. The Primary and secondary pyroelectric effects”, Infrared Physics & Technology, 40, 2, pp. 61-70.
    連結:
  14. [26]Hsiao, C. C., and Yu, S. Y., 2012, “Rapid deposition process for zinc oxide film applications in pyroelectric devices”, Smart Materials and Structures, 21, 7, pp. 105012.
    連結:
  15. [27]Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., 1991, “Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3, and PbZrTiO3 ferroelectric thin films”, Ferroelectrics, 118, 1, pp. 325-342.
    連結:
  16. [28]Choi, J. R., and Polla, D., 1993, “Integration of microsensors in GaAs MESFET process”, Journal of Micromechanics and Microengineering, 3, 2, pp. 60-64.
    連結:
  17. [29]Chang, C. C., and Tang, C. S., 1998, “An integrated pyroelectric infrared sensor with PZT thin film”, Sensors and Actuators A: Physical, 65, 2, pp, 171-174.
    連結:
  18. [30]Setiadi, D., and Regtien, P. P. L., 1995, “A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments”, Sensors and Actuators A: Physical, 47, 1-3, pp. 408-412.
    連結:
  19. [31]Lienhard, D., Heepmann, F., and Ploss, B., 1995, “Thin nickel films as absorbers in pyroelectric sensor arrays”, Microelectronic Engineering, 29, 1, pp. 101-104.
    連結:
  20. [32]Ye, C. P., Tamagawa, T., and Polla, D. L., 1991, “Experimental Studies on Primary and Secondary Pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin Film”, Journal of Applied Physics, 70, 10, pp. 5538-5543.
    連結:
  21. [33]Chong, N., Chan, H. L. W., and Choy, C. L., 2002, “Pyroelectric Sensor Array for In-line Monitoring of Infrared Laser”, Sensors and Actuators A: Physical, 96 ,2, pp. 231-238.
    連結:
  22. [35]Hoffmann, H. R., Martin, S. T., Choi, W., and Bahnemann, D. W., 1995, “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95, 1, pp. 69-96.
    連結:
  23. [36]Hamedani, N. F., Mnhjoub, A. R., Khodadadi, A. A., and Mortazavi, Y., 2011, “Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol”, Sensors and Actuators B: Chemical, 156, 2, pp. 737-742.
    連結:
  24. [37]Su, Y. K., Peng, S. M., Ji, L. W., Wu, C. Z., Cheng, W. B., and Liu, C. H., 2010, “Ultraviolet ZnO nanorod photosensors”, Langmuir, 26, 1, pp. 603-606.
    連結:
  25. [38]Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., and Koumoto, K., 2002, “Low temperature fabrication of light-emitting zinc oxide micropatterns using selfassembled monolayers”, Advanced Materials, 14, 6, pp. 418-421.
    連結:
  26. [39]Yan, F. P., Huang, L. H., Zheng, J. S., Huang, J., Lin, Z., Huang, F., and Wei, M. D., 2010, “Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells”, Langmuir, 26, 10, pp. 7153-7156.
    連結:
  27. [42]Ilegbusi, O. J., Song, H., and Chakrabarti, R., 2010, “Biocompatibility and Conductometric Property of Sol-Gel Derived ZnO/PVP Nanocomposite Biosensor Film”, Journal of Bionic Engineering, 7(Supplement), pp. S30-S35.
    連結:
  28. [43]Li, L., Zhang, L., Yao, X., and Li, B., 2004, “Computer simulation of temperature field of multilayer pyroelectric thin film IR detector”, Ceramics International, 30, 7, pp. 1847-1850.
    連結:
  29. [44]Ko, J. S., Liu, W., Zhu, W., and Kwak, B. M., 2002, “Influence of the silicon substrate thickness on the response of thin film pyroelectric detectors”, Solid-State Electronics, 46, 8, pp. 1155-1161.
    連結:
  30. [45]Hsiao, C. C., Huang, S. W., and Chang, R. C., 2012, “Temperature Field Analysis for ZnO Thin-Film Pyroelectric Devices with Partially Covered Electrode”, Sensors and Materials, 24, 8, pp. 421-441.
    連結:
  31. [46]Hsiao, C. C., Hu, Y. C., and Chang, R. C., 2010, “Some design considerations on the electrode layout of ZnO pyroelectric sensors”, Sensors and Materials, 22, 8, pp. 417-425.
    連結:
  32. [47]Norkus, V., Schulze, A., Querner, Y., and Gerlach, G., 2010, “Thermal Effects to Enhance the Responsivity of Pyroelectric Infrared Detectors”, Procedia Engineering, 5, pp.944–947.
    連結:
  33. [48]Hsiao, C. C., and Yu, S. Y., 2012, “Improved Response of ZnO Films for Pyroelectric Devices”, seneors, 12, pp. 17007-17022.
    連結:
  34. [49]Cuadrasa, A., Gasullaa, M., and Ferrari, V., 2010, “Thermal energy harvesting through pyroelectricity”, Sensors and Actuators, 158, pp. 132-139.
    連結:
  35. [50]Nguyen, H., Navid, A., and Pilon. L., 2010, “Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting”, Applied Thermal Engineering, 30, pp. 2127-2137.
    連結:
  36. [51]Lee, F. Y., Navid, A., and Pilon, L., 2012, “Pyroelectric waste heat energy harvesting using heat conduction”, Applied Thermal Engineering, 37, pp. 30-37.
    連結:
  37. [52]Yang, Y., Guo, W., Pradel, K. C., Zhu, G., Zhou, Y., Zhang, Y., Hu, Y., Lin, L., and Wang, Z. L., 2012, “Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy”, NanoLett, 12, pp. 2833-2838.
    連結:
  38. [53]Yang, Y., Zhou, Y., Wu, J. M., and Wang, Z. L., 2012, “Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensor”, acsnano, 9, pp. 8456-8461.
    連結:
  39. [54]Tamulevicius S., 1998, “Stress and strain in the vacuum deposited thin films”, Vacuum, 51, pp. 127-139.
    連結:
  40. [55]Tanig, I. T., Wang, Y. C., Hwang, W. C., Hwang, C. C., Wu, N. C., Houng, M. P., and Wang, Y. H., 2003, “Investigation of pezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions” , Journal of Crystal Growth, 252, pp. 190-198.
    連結:
  41. [56]Ho, J. J., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Lee, K. H., Hsieh, M. C., Chang, C. P., and Wu, K. H., 1999, “Analysis of Substrate Effects on the Response of Pyroelectric Thin-film Infrared Sensors”, Microscale Thermophysical Engineering, 3, pp. 263-272.
    連結:
  42. [57]Weiguo, L., Jong, S. K., and Weiguang, Z., 2001, “Substrate effects on the properties of the pyroelectric thin film IR detectors”, Sensors and Actuators, 93, pp. 117-122.
    連結:
  43. [58]Lee, C. T., Su, Y. K., and Wang, H. M., 1987, “Effect of R.F. sputtering parameters on ZnO films deposited onto GaAs Substrates”, Thin Solid Films, 150, pp. 283-289.
    連結:
  44. [59]Koch, M., Harris, N., Evans, A., White, N. M. and Brunnschweiler, A., 1997, “Screen Printing Of Thick Piezoelectric PZT Layers Onto Silicon Micromachined Membranes”, IEEE Xplore, 20, pp. 2/1-2/3.
    連結:
  45. [60]Choi, Y. H. and Lee, J., 2001, “MgTiO3 thin films prepared by metalorganic solution deposition and their properties”, Thin Solid Films, 385, pp. 43.
    連結:
  46. [63]Akedo, J., Ichki, M. M., Schroth, A., Maeda, R., and Ishikawa, Y., 1997, “X-Ray Diffraction and Scanning Electron Microscopy Observation of Lead Zirconate Titanate Thick Film Formed by Gas Deposition Method”, Japanese Journal of Applied Physics, 36, pp. 5815-5819.
    連結:
  47. [64]Akedo, J., 1998, “Jet Molding System for Realization of Three-Dimensional Micro-Structures”, Sensors and Actuators A: Physical, 69, pp. 106-112.
    連結:
  48. [65]Akedo, J., 2007, “Room Temperature Impact Consolidation (RTIC) of Fine Ceramic Powder by Aerosol Deposition Method and Applications to Microdevices”, Journal of Thermal Spray Technology, 17, 2, pp. 181-198.
    連結:
  49. [66]Chang, C. C., and Lu, P. C., 1999, “The effect of annealing on improving the quality of lead zirconate titanate thin films on Pt/SiO2/Si substrates”, Journal of Materials Processing Technology, 95, pp. 128-132.
    連結:
  50. [67]Kwok, C. K., and Desu, S. B., 1992, “Pyrochlore to perovskite phase transformation in sol-gel derived lead-zirconate-titanate thin films”, Applied Physics Letters, 60, pp. 1430-1432.
    連結:
  51. [68]Shaoqiang, C., Jian, Z., Xiao, F., Xiaohua, W., Laiqiang, L., Yanling, S., Qingsong, X., Chang, W., Jianzhong, Z., and Ziqiang Z., 2005, “Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol-gel technique”, Applied Surface Science, 241, 3-4, pp. 384-391.
    連結:
  52. [69]Tian, X., Li, Y., and Xu, Z., 2009, “Laser annealing of Pb(Zr0.52Ti0.48)O3 thin films for the pyroelectric detectors”, Thin Solid Films, 517 ,20, pp. 5855-5857.
    連結:
  53. [70]Akedo, J., Baba, S., Lebedev, M., and Abe, N., 2005, “CO2 laser annealing of Pb(Zr, Ti)O3 aerosol-deposition film on stainless-steel-sheet”, Novel Materals Processing by Advanced Electromagnetic Energy Sources, pp. 249-252, Osaka.
    連結:
  54. [71]Akedo, J., Park, J. H., and Sato, H., 2007, “High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method”, Sensors and Actuators A: Physical, 135, 1, pp. 86-91.
    連結:
  55. [72]Baba, S., Akedo, J., 2005, “Thickness dependence of aerosol deposited Pb(Zr,Ti)O3 films on stainless-steel sheet annealed by CO2 laser radiation” , Journal of Crystal Growth, 275, pp. 1247-1252.
    連結:
  56. [75]Baba, S., Akedo, J., 2009, “Fiber laser annealing of nanocrystalline PZT thick film prepared by aerosol deposition”, Applied Surface Science, 255, 24, pp. 9791-9795.
    連結:
  57. [76]Imanaka, Y., Takenouchi, M., and Akedo, J., 2005, “Ceramic dielectric film for microwave filter deposited at room temperature”, Journal of Crystal Growth, 275, 1-2, pp. 1313-1319.
    連結:
  58. [1]張君偉,2007,“雙階段濺鍍技術於氧化鋅焦電感測器響應之影響”,台灣科技大學機械工程系碩士論文。
  59. [2]巫瑞琪,1996,“輻射溫度計”,國立中央大學光電科學研究所碩士論文。
  60. [3]Van Herwaarden, A. W., Van Duyn, D. C., Van Oudheusden, B. W., and Sarro, P. M., 1989, “Integrated Thermopile Sensors”, Sensors and Actuators A: Physical, 22,1-3 , pp. 621-630.
  61. [4]柯賢文,2007,“熱電轉換及其應用”,科技發展政策報導,第5頁。
  62. [5]陳得請,2009,“紅外線熱型檢知器感測技術之研究”,逢甲大學資訊電機工程系在職專班碩士論文。
  63. [8]Mark R Stoker, 2005, “Measuring temperature”, Anaesthesia & Intensive Care Medicine, 6, 6, pp. 194-198.
  64. [9]陳詩豐,2005,“溫度感測器與控制實驗系統”,龍華科技大學機械工程系研究所碩士論文。
  65. [10]陳瑞和,2009,感測器,全華圖書股份有限公司,台北。
  66. [11]曾增春,1983,溫度量測學,科技圖書股份有限公司,台北。
  67. [12]Razeghi, M., 1998, “Current status and future trends of infrared detectors”, Opto-Electronics Review, 6, 3, pp. 155-194.
  68. [13]劉俊廷,1998,“砷化銦金屬絕緣體半導體電容與紅外線光偵檢器之研究”,國立台灣大學電機工程研究所碩士論文。
  69. [18]Ma, L., Yang, J., and Nie, J., 2009, Two forms of Wien’s displacement law, Latin-American Journal of Physics Education.
  70. [34]王昇源,2006,”焦電薄膜機械性質對紅外線響應之研究”,華梵大學機械工程系碩士論文。
  71. [40]Choi, D., Choi, M. Y., Choi, W. M., Shih, H.J., Park, H. K., Seo, J. S., Park, J., Yoon, S. M., Chae, S. J., Lee, Y. H., Kim, S. W., Choi, J. Y., Lee, S. Y., and Kim, J. M., 2010, “Fully rollable transparent nanogenerators based on graphene electrodes”, Advanced Materials, 22, 19, pp. 2187-2192.
  72. [41]Ong, B. S., Li, C. S., Li, Y. N., Wu, Y. L., and Loutfy, R., 2007, “Stable, solution-process, high-mobility ZnO thin-film transistors”, Journal of the American Chemical Society, 129, 10, pp. 2750-2751.
  73. [61]Kasyu, S., Fuchita, E., Manabe, T., and Hayashi, C., 1984, “Deposition of Ultra Fine Particles Using a Gas Jet”, Japanese Journal of Applied Physics, 23, pp. 910-912.
  74. [62]Neuman, A., Blum, J., Ymiak, T. N., Wong, Z., Rao, N. P., Gerberich, W., McMurry, P. H., Heberlein, J. V. R., and Girshick, S.L., 1999, “Plasma Science”, IEEE Transactions, 27, pp. 46 -47.
  75. [73]S. S. Rao著,1989,有限元素法-工程上之應用,陳昭昌譯,復文書局,台南。
  76. [74]Clough, R. W., 1960, “The Finite Element Method in Plane Stress Analysis”, Proceedings of American Society of Civil Engineers, 2nd Conference on Electronic Computations, 23, pp. 345-378.
  77. [77]蕭宏(Hong, X.)著,2001,半導體製程技術導論,羅正忠譯,台灣培生教育出版股份有限公司,台北。
  78. [78]洪敏雄,2009,工程材料科學,全華圖書股份有限公司,台北。
  79. [79]楊子明、鍾昌貴、沈志彥,2011,半導體製程設備技術,五南圖書出版股份有限公司,台北。
  80. [80]林三寶,2009,雷射原理與應用,全華圖書股份有限公司,台北。
Times Cited
  1. 柳勝禕(2015)。多頻段焦電感測器。虎尾科技大學機械設計工程研究所學位論文。2015。1-98。