Title

非線性強制型懸臂樑理論與實驗研究

Translated Titles

The theoretical and experimental studies of forced vibration nonlinear cantilever beam

Authors

王嘉成

Key Words

非線性振動 ; 懸臂樑 ; 有限元素分析 ; 快速傅立葉轉換 ; Nonlinear Vibration ; Cantilever Beam ; FEM ; FFT

PublicationName

虎尾科技大學機械與機電工程研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

林依恩

Content Language

繁體中文

Chinese Abstract

本文目的是藉由不同振動源,探討一垂直式懸臂樑在基礎端受一諧波激振之振動特性。壓電片當振動源實驗部份:藉由ANSYS軟體,提出一懸臂樑FEM模型,來輔以實驗驗證。實驗為一頻率283KHz給壓電片,再透過雷射振動儀進行金屬片實際振動的量測,經實驗與模擬比對後結果相近。激振器當振動源實驗部份:應用Timoshenko樑理論在垂直式懸臂樑上,探討結構參數(楊氏係數、阻尼係數、慣性矩)對FFT的影響。實驗為頻率17.547Hz與加速度1g給激振器,再透過雷射振動儀進行樑實際振動的量測,經理論與實驗驗證後在頻率0.732Hz之峰值大小比對誤差較大(<28%)外,其他頻率比對誤差均小於4%情況下,進一步探討結構參數對FFT的影響。研究顯示,在楊氏係數變為原來+5.15%(204GPa)時,自然頻率會受到影響(0.732Hz),(5.85Hz),(16.35Hz),(17.55Hz),(32.35Hz),變為(0.86Hz),(6.59Hz),(17.21Hz),(17.55Hz),(33.20Hz),對峰值大小影響也明顯(-26.68%),(-14.78%),(-10.12%),(-3.42%),(-11.36%)。阻尼係數 (×10)時,對自然頻率不造成影響,在峰值大小則影響較大(-31.57%),(-17.35%),(-21.47%),(-5.98%),(-29.36%)。慣性矩變為原來1.46e-13(-5.51%)時,不僅自然頻率會受到影響(0.64Hz), (5.17Hz),(15.71Hz),(17.55Hz),(31.37Hz),在峰值大小也會受到影響(+15.47%),(+9.68%),(+7.14%),(+4.28%),(+10.38%)。 關鍵字:非線性振動、懸臂樑、有限元素分析、快速傅立葉轉換

English Abstract

The vibration of a highly flexible cantilever beam is investigated. The order three equations of motion, developed by Crespo da Silva and Glyn (1978), for the nonlinear flexural-flexural-torsional vibration of inextensional beams, are used to investigate the time response of the beam subjected to harmonic excitation at the base. The equation for the planar flexural vibration of the beam is solved using the finite element method. The finite element model developed in this work employs Galerkin's weighted residuals method, combined with the Newmark technique, and an iterative process. We further apply 0.3g, 1g, 2.5g, 2.97g accelerations in our experimental work and observe the FFT variations. The results show reasonable agreement between theoretical and experimental data at resonant frequencies. The computations are also extended to study the impacts on FFT resulting from material properties, damping, geometries of the excited beam. Keywords:Nonlinear Vibration、Cantilever Beam、FEM、FFT

Topic Category 工程學院 > 機械與機電工程研究所
工程學 > 機械工程
工程學 > 電機工程
Reference
  1. [1]林峪嶙,液流阻尼器對非線性結構之減震分析,博士論文,國立
    連結:
  2. [3]R. R. Craig, Jr. 1985.Structural Dynamics:An
    連結:
  3. Introduction to Computer Methods.台北:北門出版社。
    連結:
  4. uniform beams carrying a concentrated mass., Journal of
    連結:
  5. Sound and Vibration, 57(3), pp.357-365, 1978
    連結:
  6. Sound and Vibration, Vol.108,pp.123-131,1986
    連結:
  7. Circular Cantilever Beam,Key Engineering Materials,
    連結:
  8. Energy Between Widely Spaced Modes in Structures,
    連結:
  9. Nonlinear Dynamics, Vol. 31, pp. 225-242, 2003
    連結:
  10. Approach, Earthquake Engineering and Structural
    連結:
  11. [13]Cook, R.D., Finite Element Analysis for Stress
    連結:
  12. Analysis, John Wiley & Sons, New York, 1995
    連結:
  13. [15]Iván Delgado,V, Nonlinear Vibration of a Cantilever
    連結:
  14. Beam, Rochester Institute of technology,2007
    連結:
  15. 成功大學,土木工程研究所,2008。
  16. [2]鐘明忠,共振腔結構受端面位移影響之模態分析與實驗,國立清
  17. 華大學,動力機械工程研究所,2003。
  18. [4]D. A. Grant, The effect of rotary inertia and shear
  19. deformation on thefrequency and normal mode equations of
  20. [5]P. A. A. Laura and R. H. Gutierrez, Vibrations of an
  21. elastically restrained cantilever beam of varying cross
  22. section with tip mass of finite length., Journal of
  23. [6]Cook, R.D., and Young, W.C., Advanced Mechanics of
  24. Materials, Prentice Hall, New Jersey, 1999
  25. [7]Kim, M.G., et al. Non-planar Nonlinear Vibration
  26. Phenomenon on the One to One Internal Resonance of the
  27. Vols. 326-328, pp. 1641-1644, 2006
  28. [8]潘威成,以模態實驗法研究懸臂樑之振動行為,碩士論文,國
  29. 立成功大學土木工程研究所,2000。
  30. [9]鄭泗滄、張枝光、許龍池,結構振動之非接觸式光學量測與驗
  31. 證,科儀新知,第十二卷,第五期,第56-61頁,1991。
  32. [10]盧建銘,旋轉懸臂樑附帶任意集中質量之自由振動分析,碩士
  33. 論文,國立成功大學造船暨船舶機械工程研究所,2001。
  34. [11]Malatkar, P., and Nayfeh, A.H., On the Transfer of
  35. [12]Zienkiewicz, O.C., A New Look at the Newmark, Houbolt
  36. and Other Time Stepping Formulas. A Weighted Residual
  37. Dynamics, Vol. 5., pp. 413-418, 1977
  38. [14]章柏憲,三明治複合材料葉片振動性能之研究,碩士論文,逢
  39. 甲大學紡織工程研究所,2003。