Title

快速氧化鋅薄膜製程於焦電元件之應用

Translated Titles

A Rapid Process of ZnO Films Applied on Pyroelectric Devices

Authors

余士源

Key Words

氧化鋅 ; 氣膠沉積法 ; 電極 ; 焦電效應 ; 三維薄膜結構 ; 雷射退火 ; Zinc oxide ; Aerosol deposition ; Electrode ; Pyroelectricity ; Three-dimensional film ; Laser annealing

PublicationName

虎尾科技大學機械設計工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

蕭俊卿

Content Language

繁體中文

Chinese Abstract

增加焦電薄膜之時變溫度率可以有效提昇焦電元件之焦電響應。本研究發展一套快速氧化鋅薄膜製程,並應用於可撓式聚醯亞胺基材與氮化矽/矽基材上製作焦電感測元件,主要以氣膠沉積法搭配膠片遮罩於短時間內製作三維氧化鋅薄膜結構,並以二氧化碳雷射進行快速退火。由實驗結果,以氣膠沉積之氧化鋅薄膜於退火後呈現多孔隙結構,其結構以有限元素法證實較深之孔隙能提升焦電層時變溫度率約20.7%。而多孔隙之焦電層結合三維結構,使其表面積大幅增加,對熱吸收率也大幅提升,與單層焦電結構相較可提升響應值約33.0%。以二氧化碳雷射退火製作之三維結構焦電感測器,其電壓響應值與以高溫爐管退火相接近,而時間僅為高溫爐管退火的1/12,可證明本研究之快速氧化鋅薄膜製程能於短時間內製作出薄膜品質優及焦電響應高之氧化鋅焦電感測元件。

English Abstract

Increasing temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, an aerosol deposition (AD) rapid process for three-dimensional ZnO films deposited on substrates of silicnon nitride/silicon and polimide was applied on pyroelectric devices by laser annealing and shadow mask. The results indicated that a porous ZnO film was successfully produced by AD with annealing. The deeper cavities in films could enhance the temperature variation rate about 20.7% by finite element method. Three-dimensional ZnO films with the porous structure induced lateral temperature gradients on the sidewalls of the responsive element for increasing the temperature variation rate, and large surface area for improving the heat absorption. The responsivity of pyroelectric devices with three-dimensional ZnO films was higher than that with a single ZnO layer about 33.0%. Moreover, the responsivity of pyroelectric devices with ZnO films treated by laser annealing was similar to that by furnace annealing. The furnace annealing was twelve times the duration of laser annealing. Hence, AD with laser annealing can speedily deposit ZnO films with high quality, and then fabricate ZnO pyroelectric devices with high responsivity.

Topic Category 工程學院 > 機械設計工程研究所
工程學 > 機械工程
Reference
  1. [1]Razeghi, M., 1998, “Current status and future trends of infrared detectors”, Opto-Electronics Review, 6(3), 155-194.
    連結:
  2. [2]Rogalski, A., 2002, “Infrared detectors: an overview”, Infrared Physics & Technology, 43(3), pp.187-210.
    連結:
  3. [3]Wilson, J., and Hawkes, J. F. B., 1983, Optoelectronics: An Introduction, Prentice-Hall International.
    連結:
  4. [5]Mark R Stoker, 2005, ”Measuring temperature”, Anaesthesia & Intensive Care Medicine , 6(6), 194-198.
    連結:
  5. [7]Müller, M., Budde, W., Gottfried, A., Huebel, R., Jähne, R., and Kück, H., 1996, “A Thermoelectric Infrared Radiation Sensor with Monolithically Integrated Amplifier Stage and Temperature Sensor”, Sensors and Actuators A: Physical, 54(19), 601-605.
    連結:
  6. [8]Lenggenhager, R., Baltes, H., Peer, J., and Forster, M., 1992, “CMOS Thermoelectric Infrared Sensors”, IEEE Electron Device Letters, 13(9), 454-456.
    連結:
  7. [9]Rogalski, A., 2001, “Infrared detectors at the beginning of the next millennium”, Opto-Electronics Review, 9(2), 173-187.
    連結:
  8. [10]Whatmore, R. W., 1986, “Pyroelectric devices and materials”, Reports on Progress in Physics, 49(12), 1335-1386.
    連結:
  9. [11]Feng, C. S., and Xu, P. M., 1999, “The detection mechanism of LiTaO type II pyroelectric detectors: I. The Primary and secondary pyroelectric effects”, Infrared Physics & Technology, 40(2), 61-70.
    連結:
  10. [12]Takayama, R., Tomita, Y., Iijima, K., and Ueda, I., 1991, “Pyroelectric properties and application to infrared sensors of PbTiO3, PbLaTiO3, and PbZrTiO3 ferroelectric thin films”, Ferroelectrics, 118(1), 325-342.
    連結:
  11. [13]Choi, J. R., and Polla, D., 1993, “Integration of microsensors in GaAs MESFET process”, Journal of Micromechanics and Microengineering, 3(2), 60-64.
    連結:
  12. [14]Chang, C. C., and Tang, C. S., 1998, “An integrated pyroelectric infrared sensor with PZT thin film”, Sensors and Actuators A: Physical, 65(2), 171-174.
    連結:
  13. [15]Setiadi, D., Regtien, P. P. L., 1995, “A VDF/TrFE copolymer on silicon pyroelectric sensor: design considerations and experiments”, Sensors and Actuators A: Physical, 46-47(1-3), 408-412.
    連結:
  14. [16]Lienhard, D., Heepmann, F., and Ploss, B., 1995, “Thin nickel films as absorbers in pyroelectric sensor arrays”, Microelectronic Engineering, 29(1), 101-104.
    連結:
  15. [17]Ye, C. P., Tamagawa, T., and Polla, D. L., 1991, “Experimental Studies on Primary and Secondary Pyroelectric effects in Pb(ZrxTi1-x)O3, PbTiO3, and ZnO thin Film”, Journal of Applied Physics, 70(10), 5538-5543.
    連結:
  16. [18]Chong, N., Chan, H. L. W., and Choy, C. L., 2002, “Pyroelectric Sensor Array for In-line Monitoring of Infrared Laser”, Sensors and Actuators A: Physical, 96(2), 231-238.
    連結:
  17. [19]Pham, L., Tjhen, C., Ye, W., and Polla, D. L., 1994, “Surfacemicromachined Pyroelectric Infrared Imaging Array with Vertically Integrated Signal Processzng Circuitry”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(4), 552-555.
    連結:
  18. [20]Li, B., 2004, “Design and simulation of an uncooled double-cantilever microbolometer with the potential for ~mK NETD”, Sensors and Actuators A: Physical, 112(2-3), 351-359.
    連結:
  19. [21]Muralt, P., 2001, “Micromachined infrared detectors based on pyroelectric thin films”, Reports on Progress in Physics, 64(10), 1339-1388.
    連結:
  20. [22]Ho, JJ., Fang, Y. K., Lee, W. J., Chen, F. Y., Hsieh, W. T., Ting, S. F., Ju, M. S., Huang, S. B., Kun-Hsien Wu, and Chen, C. Y., 1999, “The Dynamic Response Analysis of a Pyroelectric Thin-Film Infrared Sensor with Thermal Isolation Improvement Structure”, IEEE Transactions on Electron devices, 46(12), 2289-2294.
    連結:
  21. [24]Hoffmann, H. R., Martin, S. T., Choi, W., Bahnemann, D. W., 1995, “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, 95(1), 69-96.
    連結:
  22. [25]Ong, B. S., Li, C. S., Li, Y. N., Wu, Y. L., Loutfy, R., 2007, “Stable, solution-process, high-mobility ZnO thin-film transistors”, Journal of the American Chemical Society, 129(10), 2750-2751.
    連結:
  23. [26]Ilegbusi, O. J., Song, H., Chakrabarti, R., 2010, “”Biocompatibility and Conductometric Property of Sol-Gel Derived ZnO/PVP Nanocomposite Biosensor Film”, Journal of Bionic Engineering, 7(Supplement), S30-S35.
    連結:
  24. [27]Hamedani, N. F., Mnhjoub, A. R., Khodadadi, A. A., Mortazavi, Y., 2011, “Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol”, Sensors and Actuators B: Chemical, 156(2), 737-742.
    連結:
  25. [28]Yan, F. P., Huang, L. H., Zheng, J. S., Huang, J., Lin, Z., Huang, F., Wei, M. D., 2010, “Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells”, Langmuir, 26(10), 7153-7156.
    連結:
  26. [29]Choi, D., Choi, M. Y., Choi, W. M., Shih, H.J., Park, H. K., Seo, J. S., Park, J., Yoon, S. M., Chae, S. J., Lee, Y. H., Kim, S. W., Choi, J. Y., Lee, S. Y., Kim, J. M., 2010, “Fully rollable transparent nanogenerators based on graphene electrodes”, Advanced Materials, 22(19), 2187-2192.
    連結:
  27. [30]Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., Koumoto, K., 2002, “Low temperature fabrication of light-emitting zinc oxide micropatterns using selfassembled monolayers”, Advanced Materials, 14(6), 418-421.
    連結:
  28. [31]Su, Y. K., Peng, S. M., Ji, L. W., Wu, C. Z., Cheng, W. B., Liu, C. H., 2010, “Ultraviolet ZnO nanorod photosensors”, Langmuir, 26(1), 603-606.
    連結:
  29. [32]Wei, C. S., Lin, Y. Y., Hu, Y. C., Wu, C. W., Shih, C. K., Huang, C. T., and Chang, S. H., 2006, “Partial-electroded ZnO pyroelectric sensors for responsivity improvement”, Sensors and Actuators A: Physical, 128(1), 18-24.
    連結:
  30. [33]Hsiao, C. C., Hu, Y. C., Chang, R. C., 2010, “Some design considerations on the electrode layout of ZnO pyroelectric sensors”, Sensors and Materials, 22(8), 417-425.
    連結:
  31. [34]Norkus, V., Schulze, A., Querner, Y., Gerlach, G., 2010, “Thermal effects to enhance the responsivity of pyroelectric infrared detectors”, Procedia Engineering, 5(1), 944-947.
    連結:
  32. [35]Ko, J. S., Liu, W., Zhu, W., Kwak, B. M., 2002, “Influence of the silicon substrate thickness on the response of thin film pyroelectric detectors”, Solid-State Electronics, 46(8), 1155-1161.
    連結:
  33. [36]Li, L., Zhang, L., Yao, X., Li, B., 2004, “Computer simulation of temperature field of multilayer pyroelectric thin film IR detector”, Ceramics International, 30(7), 1847-1850.
    連結:
  34. [38]Li, J., Yuan, N., H. L. W., C., 2002, “Preparation of PCLT/P(VDF-TrFE) pyroelectric sensor based on plastic film substrate”, Sensors and Actuators A : Physical, 100(2-3), 231-235.
    連結:
  35. [39]Xiao, S. Y., Che, L. F., Li, X. X., Wang, Y. L., 2008, “A novel fabrication process of MEMS devices on polyimide flexible substrates”, Microelectronic Engineering, 85(2), 452-457.
    連結:
  36. [40]Bao, D., Kuang, A., Gu, H., 1998, “Sol-gel derived c-axis oriented ZnO thin films”, Thin Solid Films, 312(1-2), 37-39.
    連結:
  37. [41]Zayer, N. K., Greerf, R., Rogers, K., et al., 1999, “In situ monitoring of sputtered zinc oxide films for piezoelectric transducers”, Thin Solid Films, 352(1-2), 179-184.
    連結:
  38. [42]Ataev, B. M., Bagamadova, A. M., Djabrailov, A. M., et al., 1995, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD”, Thin Solid Films, 260(1), 19-20.
    連結:
  39. [43]Josph, B., Gopchandran, K. G., Thomas, P. V., et al., 1999, “A study on the chemical spray deposition of zinc oxide thin films and their structural and electrical properties”, Materials Chemistry and Physics, 58(1), 71-77.
    連結:
  40. [44]Akedo, J., Ichiki, M., Kikuchi, K., Maeda, R., 1998, “Jet molding system for realization of three-dimensional micro-structures”, Sensors and Actuators A: Physical, 69(1), 106-112.
    連結:
  41. [45]Akedo, J., Lebedev, M., 2002, “Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52,Ti0.48)O3 thick films formed by aerosol deposition method”, Journal of Crystal Growth, 235(1-4), 415-420.
    連結:
  42. [46]Baba, S., Lebedev, M., Akedo, J., Abe, N., 2005, “CO2 laser annealing of Pb(Zr, Ti)O3 aerosol-deposition film on stainless-steel-sheet”, Novel Materals Processing by Advanced Electromagnetic Energy Sources, 249-252, Osaka.
    連結:
  43. [47]Park, J. H., Akedo J., Sato, H., 2007, “High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method”, Sensors and Actuators A: Physical, 135(1), 86-91.
    連結:
  44. [48]Shaoqiang, C., Jian, Z., Xiao, F., Xiaohua, W., Laiqiang, L., Yanling, S., Qingsong, X., Chang, W., Jianzhong, Z., Ziqiang, Z., 2005, “Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol-gel technique”, Applied Surface Science, 241(3-4), 384-391.
    連結:
  45. [49]Tian, X., Li, Y., Xu, Z., 2009, “Laser annealing of Pb(Zr0.52Ti0.48)O3 thin films for the pyroelectric detectors”, Thin Solid Films, 517(20), 5855-5857.
    連結:
  46. [50]Kim, J. J., Bak J. Y., Lee J. H., Kim, H. S., Jang, N. W., Yun, Y., Lee, W. J., 2010, “Characteristics of laser-annealed ZnO thin film transistors”, Thin Solid Films, 518(11), 3022-3025.
    連結:
  47. [52]Cook, R. D., Malkus, D. S., and Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, John Wiley and Sons, New York.
    連結:
  48. [53]Zienkiewicz, O. C., and Cheung, Y. K. K., 1967, The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, London.
    連結:
  49. [55]Reddy, J. N., 1985, An Introduction to the Finite Element Method, Mathematics and Statistics Series, McGraw-Hill.
    連結:
  50. [56]Schroth, A., Ichiki, M., Akedo, J., Tanaka, M., and Maeda, R., 1997, “Properties and application of jet printed piezoelectric PZT film for actuation purposes”, Micro-Nano Machatronics and Human Science, 67-72, Nagoya.
    連結:
  51. [57]Baba, S., Akedo, J., 2009, “Fiber laser annealing of nanocrystalline PZT thick film prepared by aerosol deposition”, Applied Surface Science, 255(24), 9791-9795.
    連結:
  52. [58]Imanaka, Y., Takenouchi, M., and Akedo, J., 2005, “Ceramic dielectric film for microwave filter deposited at room temperature”, Journal of Crystal Growth, 275(1-2), e1313-e1319.
    連結:
  53. [61]May, G. S., and Sze, S. M., 2004, Fundamentals of Semiconductor Fabrication, John Wiley and Sons.
    連結:
  54. [63]Patel, C. K. N., 1964, "Continuous-Wave Laser Action on Vibrational-Rotational Transitions of CO2", Physical Review, 136 (5A), A1187-A1193.
    連結:
  55. [66]Hsiao, C .C., Huang, K. Y., Hu, Y. C., 2008, “Fabrication of a ZnO pyroelectric sensor”, Sensors, 8(1), 185-192.
    連結:
  56. [67]Hsiao, C. C., Yu, S. Y., 2011, “Electrode layout of ZnO pyroelectric sensors”, Journal of Mechanical Science and Technology, 25(11), 2835-2842.
    連結:
  57. [68]Wang, S., 2000, “Fundamental study on multilayer pyroelectric thin film infrared detector arrays”, Ph. D. thesis, Xi’an Jiaotong University.
    連結:
  58. [4]吳朗,1990,溫度感測器—理論與應用,全華科技圖書股份有限公司,台北。
  59. [6]Van Herwaarden, A. W., Van Duyn, D. C., Van Oudheusden, B. W., and Sarro, P. M., 1989, “Integrated Thermopile Sensors”, Sensors and Actuators A: Physical, 22(1-3), 621-630.
  60. [23]張君偉,2007,” 雙階段濺鍍技術於氧化鋅焦電感測器響應之影響”,國立台灣科技大學機械工程系碩士論文。
  61. [37]洪金賢,2007,“軟性材料基板的介紹與應用”,工業材料雜誌,243,159-168。
  62. [51]Clough, R. W., 1960, “The Finite Element Method in Plane Stress Analysis”, Proceedings of American Society of Civil Engineers, 2nd Conference on Electronic Computations, 23, 345-378, Pittsburgh.
  63. [54]Moaveni, S.,著, 2001, 有限元素分析 理論與應用ANSYS,陳新郁、林政仁譯,台灣培生教育出版股份有限公司,台北。
  64. [59]劉傳璽、陳進來,2007,半導體元件物理與製程理論與實務,五南圖書出版股份有限公司,台北。
  65. [60]洪敏雄等編著,2009,工程材料科學,全華圖書股份有限公司,台北。
  66. [62]張振燦,1985,雷射與加工,亞太圖書出版社,台北。
  67. [64]楊寶賡, 2010,雷射工程,新文京開發出版股份有限公司,台北。
  68. [65]川澄博通,1990,蘇品書,雷射加工技術:各類加工與製作實用,復漢出版社,台南。