Title

砂紙基電極對超級電容器儲能特性之影響

Translated Titles

Influence of Sandpaper-Based Electrodes on the Electrochemical Performance in Supercapacitor

Authors

吳政鴻

Key Words

砂紙 ; 可撓式超級電容器 ; 凝膠電解質 ; 多孔隔膜 ; 儲能 ; sandpaper ; flexible supercaoacitor ; gel electrolyte ; microporous separator ; energy storage

PublicationName

虎尾科技大學光電與材料科技研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

游信和

Content Language

繁體中文

Chinese Abstract

本論文利用蘋果果膠分別分散石墨烯與奈米碳管。為了防止石墨烯的堆疊與剝落,我們以奈米碳管做為間隔物與黏著劑,以1:5比例調配石墨烯和奈米碳管導電混合液,將此混合液滴覆於砂紙表面後製得可撓式電極。經循環伏安分析發現細砂紙緻密的表面形貌與高的比表面積有助於比電容值的提升。凝膠電解質能改善液態電解質容易洩漏的問題,也取代固態電解質接觸不良的問題,且與易電極間產生良好的附著性,有效滲透於砂紙電極孔隙中,產生更多的電荷吸附反應而得到較高的比電容值。將凝膠電解質、砂紙電極與多孔隔膜以三明治結構組立成可撓式超級電容器,發現它具備優異的撓曲性與循環穩定性。顯示細砂紙基超級電容器未來具有應用在可撓式與穿戴式電子產品上之潛力。

English Abstract

Graphene and carbon nanotubes were dispersed with a pectin solution. Carbon nanotubes not only prevent the stacking of graphene sheets but also act as spacer and binder. The hybrid conductive suspension was dropped onto sandpaper, after dried it was used as the electrodes. Fine sandpaper-based electrode could promote the specific capacitance in supercapacitor, since its high surface area. We replace the liquid or solid electrolyte with gel electrolyte to prevent leakage and contact discontinuity. The larger contact surface can absorb more electrolyte ions effectively and increase the assembled ions on the surface of electrodes. The high performance supercapacitor was constructed with one separator coated with gel electrolyte inserted between two fine sandpaper-based electrodes, which were assembled into a sandwich structure by hot-pressing. By electrochemical analyzes, we found the fine sandpapaer-based supercapacitor had excellent cycle stability and flexibility. The simple and low-cost assembly of this flexible and lightweight supercapacitor means it presents potential applications on wearable electronics, flexible products, etc.

Topic Category 電機資訊學院 > 光電與材料科技研究所
工程學 > 化學工業
Reference
  1. [1] Anothumakkool, B., Torris, A. T. A., Bhange, S. N., Unni, S. M., Badiger, M. V. and Kurungot, S., 2013, “Design of a high performance thin all-solid-state supercapacitor mimicking the active interface of its liquid-state counterpart”, ACS Appl Mater Interfaces, 5, 13397-13404.
    連結:
  2. [2] Yu, A., Roes, I., Davies, A. and Chen, Z., 2010, “Ultrathin, transparent, and flexible graphene films for supercapacitor application”, Applied Physics Letters, 96, 2531051-2531053.
    連結:
  3. [4] Chen, P., Chen, H., Qiu, J. and Zhou, C., 2010, “Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates”, Nano Research, 3, 594-603.
    連結:
  4. [5] Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N. and Qin, L. C., 2011, “Polyaniline-coated electro-etched carbon fiber cloth electrodes for supercapacitors”, Journal of Physical Chemistry C, 115, 23584-23590.
    連結:
  5. [6] Yang, J., Wu, M., Chen, F., Fei, Z. and Zhong, M., 2011, “Preparation, characterization, and supercritical carbon dioxide foaming of polystyrene/graphene oxide composites”, Journal of Supercritical Fluids, 56, 201-207.
    連結:
  6. [7] Sato, T., Masuda, G. and Takagi, K., 2004, “Electrochemical properties of novel ionic liquids for electric double layer capacitor applications”, Electrochimica Acta, 49, 3603-3611.
    連結:
  7. [8] Tanaka, S., Nakao, H., Mukai, T., Katayama, Y. and Miyake, Y., 2012, “An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure”, Journal of Physical Chemistry C, 116, 26791-26799.
    連結:
  8. [9] Peng, C., Zhang, S., Jewell, D. and Chen, G. Z., 2008, “Carbon nanotube and conducting polymer composites for supercapacitors”, Progress in Natural Science, 18, 777-788.
    連結:
  9. [10] Li, X. and Zhitomirsky, I., 2013, “Electrodeposition of polypyrrole–carbon nanotube composites for electrochemical supercapacitors”, Journal of Power Sources, 221, 49-56.
    連結:
  10. [11] Zhang, L. and Shi, G., 2011, “Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability”, Journal of Physical Chemistry C, 115, 17206-17212.
    連結:
  11. [12] Yu, G., Xie, X., Pan, L., Bao, Z. and Cui, Y., 2013, “Hybrid nanostructured materials for high-performance electrochemical capacitors”, Nano Energy, 2, 213-234.
    連結:
  12. [13] Wang, S., Pei, B., Zhao, X. and Dryfe, R. A. W., 2013, “Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors”, Nano Energy, 2, 530-536.
    連結:
  13. [14] Lake, J. R., Cheng, A., Selverston, S., Tanaka, Z., Koehne, J., Meyyappan, M. and Chen, B., 2012, “Graphene metal oxide composite supercapacitor electrodes”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 30, 1181-1186.
    連結:
  14. [15] Tai, Z., Yan, X. and Xue, Q., 2012, “Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode”, Journal of Power Sources, 213, 350-357.
    連結:
  15. [16] Wassei, J. K. and Kaner, R. B., 2010, “Graphene, a promising transparent conductor”, Materials Today, 13, 52-59.
    連結:
  16. [17] Shakir, I., 2014, “High energy density based flexible electrochemical supercapacitors from layer-by-layer assembled multiwall carbon nanotubes and graphene”, Electrochimica Acta, 129, 396-400.
    連結:
  17. [19] Yu, M., Zhai, T., Lu, X., Chen, X., Xie, S., Li, W., Liang, C., Zhao, W., Zhang, L. and Tong, Y., 2013, “Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors”, Journal of Power Sources, 239, 64-71.
    連結:
  18. [20] Sun, S., Song, J., Shan, Z. and Feng, R., 2012, “Electrochemical properties of a low molecular weight gel electrolyte for supercapacitor”, Journal of Electroanalytical Chemistry, 676, 1-5.
    連結:
  19. [21] Choi, J. A., Yoo, J. H., Yoon, W. Y. and Kim, D. W., 2014, “Cycling characteristics of lithium powder polymer cells assembled with cross-linked gel polymer electrolyte”, Electrochimica Acta, 132, 1-6.
    連結:
  20. [22] Yu, H., Tang, Q., Wu, J., Lin, Y., Fan, L., Huang, M., Lin, J., Li, Y. and Yu, F., 2012, “Using eggshell membrane as a separator in supercapacitor”, Journal of Power Sources, 206, 463-468.
    連結:
  21. [23] Kim, Y. J., Kim, H. S., Doh, C. H., Kim, S. H. and Lee, S. M., 2013, “Technological potential and issues of polyacrylonitrile based nanofiber non-woven separator for Li-ion rechargeable batteries”, Journal of Power Sources, 244, 196-206.
    連結:
  22. [24] Chen, J., Wang, S., Cai, D. and Wang, H., 2014, “Porous SiO2 as a separator to improve the electrochemical performance of spinel LiMn2O4 cathode”, Journal of Membrane Science, 449, 169-175.
    連結:
  23. [25] Chen, J., Wang, S., Ding, L., Jiang, Y. and Wang, H., 2014, “Performance of through-hole anodic aluminum oxide membrane as a separator for lithium-ion battery”, Journal of Membrane Science, 461, 22-27.
    連結:
  24. [26] Xiong, M., Tang, H., Wang, Y. and Pan, M., 2014, “Ethylcellulose-coated polyolefin separators for lithium-ion batteries with improved safety performance”, Carbohydr Polym, 101, 1140-1146.
    連結:
  25. [27] Shieh, J. Y., Kuo, J. Y., Weng, H. P. and Yu, H. H., 2012, “Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip–drawing method”, Langmuir, 29, 667-672.
    連結:
  26. [28] Shieh, J. Y., Zhang, S. H., Wu, C. H. and Yu, H. H., 2014, “A facile method to prepare a high performance solid-state flexible paper-based supercapacitor ”, Applied Surface Science,
    連結:
  27. [29] Cheng, Y., Lu, S., Zhang, H., Varanasi, C. V. and Liu, J., 2012, “Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors”, Nano Lett, 12, 4206-4211.
    連結:
  28. [30] Cheng, Q., Tang, J., Ma, J., Zhang, H., Shinya, N. and Qin, L. C., 2011, “Graphene and nanostructured MnO2 composite electrodes for supercapacitors”, Carbon, 49, 2917-2925.
    連結:
  29. [31] Zhang, Y., Li, J., Kang, F., Gao, F. and Wang, X., 2012, “Fabrication and electrochemical characterization of two-dimensional ordered nanoporous manganese oxide for supercapacitor applications”, International Journal of Hydrogen Energy, 37, 860-866.
    連結:
  30. [32] Wu, M., Ai, P., Tan, M., Jiang, B., Li, Y., Zheng, J., Wu, W., Li, Z., Zhang, Q. and He, X., 2014, “Synthesis of starch-derived mesoporous carbon for electric double layer capacitor”, Chemical Engineering Journal, 245, 166-172.
    連結:
  31. [33] Yang, J. and Zou, L., 2014, “Graphene films of controllable thickness as binder-free electrodes for high performance supercapacitors”, Electrochimica Acta, 130, 791-799.
    連結:
  32. [34] Arora, P. and Zhang, Z., 2004, “Battery separators”, Chem Rev, 104, 4419-4462.
    連結:
  33. [35] Kalpana, D., Renganathan, N. G. and Pitchumani, S., 2006, “A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors”, Journal of Power Sources, 157, 621-623.
    連結:
  34. [36] Sawangphruk, M., Srimuk, P., Chiochan, P., Krittayavathananon, A., Luanwuthi, S. and Limtrakul, J., 2013, “High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper”, Carbon, 60, 109-116.
    連結:
  35. [37] Zhou, Z. and Wu, X. F., 2013, “Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: Synthesis and electrochemical characterization”, Journal of Power Sources, 222, 410-416.
    連結:
  36. [38] Wei, L., Jiang, W., Yuan, Y., Goh, K., Yu, D., Wang, L. and Chen, Y., 2014, “Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor”, Journal of Solid State Chemistry, in press.
    連結:
  37. [39] Zhang, L. L., Zhou, R. and Zhao, X. S., 2010, “Graphene-based materials as supercapacitor electrodes”, Journal of Materials Chemistry, 20, 5983-5992.
    連結:
  38. [40] Byon, H. R., Lee, S. W., Chen, S., Hammond, P. T. and Shao-Horn, Y., 2011, “Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors”, Carbon, 49, 457-467.
    連結:
  39. [41] Shakir, I., 2014, “High Energy Density based Flexible Electrochemical Supercapacitors from Layer-by-Layer Assembled Multiwall Carbon Nanotubes and Graphene”, Electrochimica Acta, 129, 396-400.
    連結:
  40. [42] Tamailarasan, P. and Ramaprabhu, S., 2012, “Carbon Nanotubes-Graphene-Solidlike Ionic Liquid Layer-Based Hybrid Electrode Material for High Performance Supercapacitor”, The Journal of Physical Chemistry C, 116, 14179-14187.
    連結:
  41. [43] Wang, Y., Wu, Y., Huang, Y., Zhang, F., Yang, X., Ma, Y. and Chen, Y., 2011, “Preventing Graphene Sheets from Restacking for High-Capacitance Performance”, The Journal of Physical Chemistry C, 115, 23192-23197.
    連結:
  42. [44] Yu, D. and Dai, L., 2009, “Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors”, The Journal of Physical Chemistry Letters, 1, 467-470.
    連結:
  43. [3] Gao, Y., Zhou, Y. S., Xiong, W., Jiang, L. J., Mahjouri-samani, M., Thirugnanam, P., Huang, X., Wang, M. M., Jiang, L. and Lu, Y. F., 2013, “Transparent, flexible, and solid-state supercapacitors based on graphene electrodes”, APL Materials, 1, 0121011-0121017.
  44. [18] Hiralal, P., Imaizumi, S., Unalan, H. E., Matsumoto, H., Minagawa, M., Rouvala, M., Tanioka, A. and Amaratunga, G. A. J., 2010, “Nanomaterial-enhanced all-solid flexible zinc carbon batteries”, ACS Nano, 4, 2730-2734.