Title

五軸誤差量測之路徑規劃與幾何誤差分析

Translated Titles

Tool Path Planning and Geometric Errors Analysis for Five-Axis Error Measurement

Authors

陳佳彥

Key Words

五軸工具機 ; 幾何誤差 ; 誤差分析 ; 順逆向運動方程式 ; 路徑規劃 ; five-axis machine tool ; geometric errors ; errors analysis ; path plan

PublicationName

虎尾科技大學機械設計工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

林明宗

Content Language

繁體中文

Chinese Abstract

本論文對於工具機的幾何誤差進行探討,首先利用齊次轉換矩陣推導並建立五軸工具機的運動學及幾何誤差模型,該幾何誤差模型包含線性軸及旋轉軸共43個幾何誤差,接著分析此誤差模型,找出對於五軸總體誤差具有關鍵影響之誤差項以及該誤差相對應之幾何參數。此外,利用所推導之順逆向運動學方程式產生刀具中心點(Tool Center Point, TCP)之NC命令,並進行XYC三軸同動之K2路徑規劃,接著透過Matlab軟體進行NC路徑模擬與驗證,分別針對五軸工具機進行幾何誤差模擬與分析,並對於模擬結果探討並歸納出幾何誤差會產生之圖形種類。最後實驗結果驗證該方法可以模擬工具機的幾何誤差,並針對誤差進行補償,用以提升機台精度。

English Abstract

This paper is to probe the geometric errors of machine tool. The kinematic equations and geometric error model of the five-axis machine tool are derived using HTM (homogeneous transformation matrix). This static-error model is composed of 43 static errors include linear axis and rotation axis. The proposed method first analyzes the error model and identifies the critical errors and corresponding offsets of the five-axis machine tool which dominant the overall errors. Therefore, NC test paths for TCP such as K2 can be obtained according to inverse kinematics equations. Through Matlab conduct simulation and verification for NC path, then execute geometric errors simulatio and analysis for five-axis machine tool respectively. Simulations are performed to verify the feasibility of the geometric errors for machine tool. Finally, experiments are conducted and the results demonstrate that the geometric errors can be further compensated for the precise five-axis machine tool.

Topic Category 工程學院 > 機械設計工程研究所
工程學 > 機械工程
Reference
  1. [1] A. K. Srivastava, S. C. Veldhuis and M. A. Elbestawit, “Modelling geometric and thermal errors in a five-axis cnc machine tool,” International Journal of Machine Tools and Manufacture, vol. 35, no. 9, pp. 1321-1337, 1995.
    連結:
  2. [2] Suk-Hwan Suh, Eung-Suk Lee and Se-Yong Jung, “Error modelling and measurement for the Rotary Table of Five-axis Machine Tools,” International Journal of Advanced Manufacturing Technology, vol.14, pp.656-663, 1998.
    連結:
  3. [3] W.T. Lei and Y.Y. Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe–ball. Part I: design and modeling,” International Journal of Machine Tools and Manufacture, vol. 42, pp. 1153–1162, 2002.
    連結:
  4. [4] Y. Lin and Y. Shen, “Modeling of Five-Axis Machine Tool Metrology Models Using the Matrix Summation Approach,” International Journal of Machine Tools and Manufacture, vol. 21, pp. 243–248, 2003.
    連結:
  5. [5] W. T. Lei and Y. Y. Hsu, “Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part II: errors estimation,” International Journal of Machine Tools and Manufacture, vol. 42, pp. 1163-1170, 2002.
    連結:
  6. [6] W. T. Lei and Y. Y. Hsu, “Accuracy enhancement of five-axis CNC machines through realtime error compensation,” International Journal of Machine Tools and Manufacture, vol. 43, pp. 871-877, 2003.
    連結:
  7. [7] Y. Y. Hsu and S. S. Wang, “A new compensation method for geometry errors of five-axis machine tools,” International Journal of Machine Tools and Manufacture, vol. 47, pp. 352-360, 2007.
    連結:
  8. [8] C. Hong, S. Ibaraki and A. Matsubara, “Influence of position-dependent geometric errors od rotary axes on a machining tese of cone frustum by five-axis machine tools,” Precision Engineering, vol. 35, pp. 1-11, 2011.
    連結:
  9. [9] S. Ibaraki, C. Oyama and H. Otsubo, “Construction of an error map of rotary axes on a five-axis machining center by staic R-test,” International Journal of Machine Tools and Manufacture, vol. 51, pp. 190-200, 2011.
    連結:
  10. [10] ISO 230-4, Test code of machine tools. Part 4: Circular test for numerically controlled machine tools, International Standard, 2005.
    連結:
  11. [15] W.-Y. Jywe, C.-H. Liu, T.-H. Hsu, “Non-Bar, an Optical Calibration System for Five-axis CNC Machine Tools”, revised to International Journal of Machine Tools and Manufacture, vol.59, pp. 16-23, 2012.
    連結:
  12. [16] M. T. Lin, M. S. Tsai and H. T. Yau, “Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm,” International Journal of Machine Tools and Manufacture, vol. 47, no. 15, pp. 2246-2262, 2007.
    連結:
  13. [17] ISO 841, Axis and Motion Nomenclature for Numerical Controlled Machines, International Organization for Standardization, 1974.
    連結:
  14. [18] H. S. Alexander, Precision Machine Design, Society of Manufacturing Engineers, 1992.
    連結:
  15. [20] 許維中,六維運動量測裝置量測五軸工具機之誤差,國立清華大學動力機械學系,碩士論文,2009。
    連結:
  16. [21] 游振奇,五軸工具機動態誤差量測系統,國立清華大學動力機械工程學系,碩士論文,2008。
    連結:
  17. [22] 彭怡敏,五軸工具機動態誤差量測及補償,國立清華大學動力機械工程學系,碩士論文,2007。
    連結:
  18. [23] 陳立偉,工具機轉動軸動態誤差量測及補償,國立清華大學動力機械工程學系,碩士論文,2006。
    連結:
  19. [26] 陳冠安,以形狀創成函數探討五軸工具機組裝誤差對體積誤差之效應,國立成功大學機械工程學系,碩士論文,2010。
    連結:
  20. [27] 廖修鶴,應用形狀創成函數於多軸工具機構形評估系統之發展,國立成功大學機械工程學系,碩士論文,2009。
    連結:
  21. [29] 林玉山,CNC五軸工具機幾何誤差檢測系統,虎尾科技大學自動化工程研究所,碩士論文,2010。
    連結:
  22. [30] 張可迪,光學量測系統應用於五軸工具機鑽孔加工的靜態誤差量測,虎尾科技大學創意工程與精密科技研究所,碩士論文,2010。
    連結:
  23. [31] 陳志安,五軸CNC工具機動態誤差與幾何誤差之誤差分析與模擬,虎尾科技大學機械與機電工程研究所,碩士論文,2010。
    連結:
  24. [32] 林易樞,線性馬達五軸工具機NURBS曲線輪廓加工誤差補償器原理研究,國立成功大學製造工程研究所,碩士論文,2009。
    連結:
  25. [38] 張惠民, “XYZA-C並聯式工具機之誤差模型及誤差補償研究”, 國立成功大學機械工程研究所, 碩士論文, 2002。
    連結:
  26. [11] ISO 230-1, Test code of machine tools, Part 1: geometric accuracy of machine operating under no-load or under finishing conditions, International Standard, 1986.
  27. [12] ISO 230-7, Test conditions for machine centers. Part 4: Geometric accuracy of axes of rotation, International Standard, 2006.
  28. [13] ISO 10791-6, Test code of machine tools - Accuracy of feeds, speeds and interpolations, International Standard, 2001.
  29. [14] W.-Y. Jywe, C.-H. Liu, T.-H. Hsu and C.-M. Hsu, “Detecting assembly for a multi-axis machine tool”, United States Patent, No. 7852478, 2010.
  30. [19] 廖明毅, “以DBB量測及校正五軸工具機之幾何誤差”, 國立清華大學動力機械工程研究所, 碩士論文, 2001。
  31. [24] 莊育喬,五軸工具機旋轉軸動態誤差量測與改善研究,國立清華大學動力機械工程學系,碩士論文,2004。
  32. [25] 徐永源,五軸CNC工具機之精度量測及幾何誤差補償,國立清華大學動力機械工程學系,博士論文,2002。
  33. [28] 蕭智誠,五軸工具機機構誤差分析,逢甲大學機械工程學所,碩士論文,2005。
  34. [33] 侯垣裴,五軸工具機牙冠加工之研究,國立中正大學機械工程所,碩士論文,2009。
  35. [34] 廖家豪,五軸CNC工具機插補器之研究,國立中正大學機械工程所,碩士論文,2010。
  36. [35] 涂明宏,具即時運動學轉換之五軸工具機數值控制系統分析與模擬,雲林科技大學機械工程系,碩士論文,2010。
  37. [36] 楊喻翔,高速切削五軸工具機精度改善之研究,明志科技大學機電工程研究所,碩士論文,2008。
  38. [37] 吳嘉濃,五軸工具機運動控制誤差之分析,逢甲大學機械工程學所,碩士論文,2002。
Times Cited
  1. 林忠穎(2014)。線性軸角度參數補償技術開發。虎尾科技大學自動化工程研究所學位論文。2014。1-62。
  2. 李俊億(2016)。五軸工具機之幾何誤差補償方法探討。中正大學機械工程學系學位論文。2016。1-111。