Title

運用田口法於決定錫膏印刷製程參數最佳化之研究

Translated Titles

Using Taguchi Method to Determine the Optimal Parameters for Solder Paste Printing Process

Authors

吳炯宏

Key Words

表面黏著技術 ; 錫膏印刷 ; 田口法 ; 製程能力 ; 記憶體模組 ; SMT ; solder paste printing ; Taguchi method ; process capability ; DRAM module

PublicationName

虎尾科技大學工業工程與管理研究所在職專班學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

黃信豪

Content Language

繁體中文

Chinese Abstract

為因應市場需求,記憶體模組由於表面黏著技術(Surface Mount Technology, SMT)之進步近年來已趨向輕、薄、短、小、大容量及快速運算速度之記憶體模組產品。在面對先進的SMT技術時,對於電路板錫膏印刷製程的要求日趨重要。 有鑑於目前業界所使用經驗法則之印刷參數,曠日費時且成本昂貴,因此,本研究利用田口法(Taguchi method)來決定最佳的錫膏印刷參數設定。本研究篩選出焊盤間距、脫膜速度、刮刀速度、刮刀壓力、開孔比率、錫膏種類、鋼板厚度與錫膏黏度等參數作為實驗的控制因子,利用3D錫膏厚度檢測儀量測所有印刷基板焊盤之印刷錫膏厚度,並將錫膏厚度、體積、面積基礎資料匯入XML Watcher軟體分析相關類別型零件,然後採Process Insight製程能力分析軟體找尋最佳印刷參數組合進行比對驗證績效,選擇出較佳組合供生產線參考使用。 本研究針對0.30mm、0.35mm與0.40mm之焊盤進行分析並訂定出最佳參數組合並且以0.30mm之參數組合做為生產製程能力之驗證。結果發現目前生產製程能力之 Cpk值可由1.456提升到1.698,明顯改善製程能力。

English Abstract

Due to the advances in surface mount technology (SMT) in recent years, DRAM module has trended to become lighter, thinner, shorter, smaller, and have large capacity and fast processing speed. In the face of advanced SMT technology, requirements for the circuit board solder paste printing process have become increasingly strict. Currently the industry uses rule of thumb to determine the printing parameters which is time-consuming and expensive. Therefore, this study applies Taguchi method in determining the optimal parameters for solder paste printing process. The parameters including scraping speed, pad spacing, hole-opening ratio, scraping pressure, stripping speed, solder paste type, plate thickness, and paste viscosity are used as control factors. Solder paste thickness, volume, and based-area data are inputted into the XML Watcher software for analysis with related category parts, then the Process Insight process capability analysis software is used to determine process capability of the best printing parameter combination. The optimal parameters combination has found for 0.30mm, 0.35mm and 0.40mm pad printing process. In addition, a validation experiment has been performed. The result shows that 0.30mm printing process capability increases from current value of Cpk = 1.456 to Cpk = 1.698.

Topic Category 管理學院 > 工業工程與管理研究所在職專班
工程學 > 工程學總論
社會科學 > 管理學
Reference
  1. 12.郭建昌(1999),多層印刷電路板排板方式與製程成本之整合分析,清華大學,碩士論文。
    連結:
  2. 16.碁達科技股份有限公司(1993),技術文件。
    連結:
  3. 18.潘憲澤、黃和悅(2010),無鉛複合銲錫製備與特性之研究,國立虎尾科技大學,碩士論文。
    連結:
  4. 19.蔡聰男(2003),自適應式表面黏著製程品質預測控制系統之發展,國立成功大學,碩士論文。
    連結:
  5. 20.葉俊吾(2002),運用類神經網路建構SMT錫膏印刷製程品質管制系統,國立成功大學,碩士論文。
    連結:
  6. 22.藝典科技股份有限公司(2010),技術文件。
    連結:
  7. 24.Dubravka, R., Vinko S., and Janeta F. P. (1995). “Solder Paste for Fine Line Printing in Hybrid Microelectronics,” Microelectronics Journal, Vol. 26, pp. 441-447.
    連結:
  8. 27.Hwang, J. S. (1996). Modern Solder Technology for Competitive Electronics Manufacturing, McGraw-Hill, Inc., New York.
    連結:
  9. 28.He, D., Ekere, N. N., and Currie, M. A. (1998). “The behavior of solder pastes in Stencil Printing with Vibrating Squeegee”, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part C, Vol. 21. No.4, pp. 317-324.
    連結:
  10. 30.IPC-A-610C (2000). Acceptability of Electronic Assemblies, The Institute for Interconnecting and Packaging Electronic Circuits, Northbrook, Illinois.
    連結:
  11. 31.IPC-SM-782A (1993). Surface Mount Design and Land Pattern Standard, The Institute for Interconnecting and Packaging Electronic Circuits, Northbrook, Illinois.
    連結:
  12. 33.Lofti, A. and Howarth, M. (1998). “Industrial Application of Fuzzy Systems: Adaptive Fuzzy Control of Solder Paste Stencil Printing”, Journal of Information Sciences, Vol. 107, pp. 273–285.
    連結:
  13. 34.Marcoux, P. P. (1989). Surface Mount Technology-Design for Manufacturing, PPM Associates, Michigan.
    連結:
  14. 36.Rajkumar, D., Nguty, T. and Ekere, N. N. (2000). “Optimising Process Parameters for Flip Chip Stencil Printing Using Taguchi's Method”, Electronics Manufacturing Technology Symposium, 26th IEEE/CPMT International, pp. 382-388.
    連結:
  15. 1.三原色工作坊(2000),-電腦DIY-記憶體安裝與管理,文魁資訊股份有限公司,台北。
  16. 2.日商千住金屬工業株式會社(2006),技術文件。
  17. 3.台灣電路板協會(2004),技術文件。
  18. 4.石川馨(1979),初級實驗計劃法,中興管理顧問公司,台北。.
  19. 5.田口玄一(1993),品質工程案例集,中國生產力中心,台北。
  20. 6.矢野宏(2004),田口式品質工學的思想,和昌出版,桃園。
  21. 7.吳宗正(1997),實驗設計,復文,臺南。
  22. 8.吳復強(2005),產品穩健設計:田口方法之原理與應用,全威圖書出版,台北。
  23. 9.李友錚(2008),品質管理整合性思維,前程文化,台北。
  24. 10.房克成、林清風(2006),管制圖與製程管制,品質管制學會,台北。
  25. 11.施威銘(2010),最新計算機概論,旗標出版股份有限公司,台北。
  26. 13.陳耀茂(2003),田口統計解析法,五南,台北。
  27. 14.葉怡成(2001),實驗計劃法:製程與產品最佳化,五南,台北。
  28. 15.華新科技(2011),技術文件。
  29. 17.劉克琪(1994),實驗設計與田口式品質工程,華泰,台北。
  30. 21.聯璟金屬(惠州)有限公司(2007),技術文件。
  31. 23.DRAMeXchange(2011),集邦全球電子交易市集網頁:http://www.dramx.com/。
  32. 25.Fledmann, K. and Sturm, J. (1994). “Closed Loop Quality Control in Printed Circuit Assembly”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology – Part A, Vol. 17, No. 2, pp. 270-276.
  33. 26.Hwang, J. S. ( 1992). Solder Paste in Electronics Packaging, Van Nostrand Reinhold, New Jersey.
  34. 29.Itoh, M. (1999). General Information on Solder Paste, Technical Report, KOKI Company Limited, Japan, Tokyo.
  35. 32.IPC ANSI/J-STD-005 (1995), Joint Industry Standard Requirements for solder pastes.
  36. 35.Ries, B. (2000). “Inspection Strategies for Process Control”, Circuits Assembly, March.
  37. 37.Tsai, T.-N. (2000). Solder Defect Analysis, Technical Report, Verifone Taiwan Ltd., Kaohsiung, Taiwan.
  38. 38.Tsai, T. -N. (1995). Land Pattern and Stencil Design Guideline – KME-001, VeriFone, Kaohsiung, Taiwan.
  39. 39.Vardaman, J. (1992). Surface Mount Technology – Recent Japanese Developments, IEEE Press, New York.
  40. 40.Xiao, M., Lawless, K. J., and Lee, N. C. (1993). “Prospects of Solder Paste in the Ultra Fine Pitch Era”, Soldering & Surface Mount Technology, No. 15, pp. 4-13.
  41. 41.Wilson, T. and Bloomfield, D. (1995). “An Optimistic Outlook for Ultra Fine Pitch-Part I”, Electronic Production, February, pp. 39-42.
Times Cited
  1. 廖睿鴻(2017)。運用田口方法於決定線性滑軌鑽孔製程參數最佳化之研究。虎尾科技大學工業管理系工業工程與管理碩士班學位論文。2017。1-52。