Title

可控制形貌的鈦酸鋇奈米結構合成法

Translated Titles

Morphology-controlled synthesis of barium titanate nanostructures

DOI

10.6842/NCTU.2009.00362

Authors

黃冠智

Key Words

鈦酸鋇 ; 奈米結構 ; 熔鹽合成法 ; 形貌控制 ; 原地生成機制 ; Barium Titanate ; Nanostructure ; Molten-salt synthesis ; Morphology-controlled ; In-situ transformation mechanism

PublicationName

交通大學光電工程系所學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

謝文峰

Content Language

英文

Chinese Abstract

我們利用熔鹽合成法來合成並控制BaTiO3奈米結構的形貌如球狀、立方狀和柱狀奈米結構。本實驗中,所有的產物都是經由BaO/BaCO3與TiO2在NaCl-KCl低共熔混合物中以溫度700 °C、1小時的條件成長。接著,我們使用粉末X光繞射分析儀、場發射掃描式電子顯微鏡以及穿透式電子顯微鏡去檢測樣品的奈米結構及形貌。最後,我們提出並利用BaTiO3奈米結構在熔鹽中的預測合成機制來說明BaTiO3奈米結構在反應中的原地生長機制,並且歸納出TiO2的起始形狀以及前驅物的溶解度會影響BaTiO3產物的形狀。

English Abstract

Morphology-controlled BaTiO3 nanostructures such as spherical, cube-shaped and rod-shaped BaTiO3 were synthesized by using molten-salt synthesis method. The products were all synthesized by reaction of BaO/BaCO3 and TiO2 with a eutectic mixture of NaCl-KCl flux at 700 °C for 1 h. Powder X-ray diffraction device, field emission scanning electron microscope and transmission electron microscope were used to investigate the structure and morphology of the products. The proposed synthetic mechanism of BaTiO3 in the molten salt was also provided to illustrate in-situ transformation mechanism of BaTiO3 nanostructures in the reaction. It reveals that the initial shape of the titania and the dissolution rate of the initial precursors critically determine the shapes of the final products.

Topic Category 電機學院 > 光電工程系所
工程學 > 電機工程
Reference
  1. (3) Ahn, C. H.; Rabe, K. M.; Triscone, J. M., Science 2004, 303, 488.
    連結:
  2. (6) Scott, J. F., Science 2007, 315, 954.
    連結:
  3. (7) O'Brien, S.; Brus, L.; Murray, C. B., J. Am. Chem. Soc. 2001, 123, 12085.
    連結:
  4. (8) Alivisatos, A. P., Science 1996, 271, 933.
    連結:
  5. (10) Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., Science 2001, 292, 1897.
    連結:
  6. (14) Hong, J. W.; Fang, D. N., Appl. Phys. Lett. 2008, 92, 3.
    連結:
  7. (22) Deng, H.; Qiu, Y. C.; Yang, S. H., J. Mater. Chem. 2009, 19, 976.
    連結:
  8. (25) Zhong, W. L.; Wang, Y. G.; Zhang, P. L.; Qu, B. D., Phys. Rev. B 1994, 50, 698.
    連結:
  9. (30) Ziemelis, K., Nature 2000, 406, 1021.
    連結:
  10. (33) Wang, W. Z.; Zhan, Y. J.; Wang, X. S.; Liu, Y. K.; Zheng, C. L.; Wang, G. H., Mater. Res. Bull. 2002, 37, 1093.
    連結:
  11. (34) Wang, Y.; Lee, J. Y., J. Phys. Chem. B 2004, 108, 17832.
    連結:
  12. (35) Wang, W. Z.; Xu, C. K.; Wang, G. H.; Liu, Y. K.; Zheng, C. L., Adv. Mater. 2002, 14, 837.
    連結:
  13. (36) Liu, Y. K.; Zheng, C. L.; Wang, W. Z.; Yin, C. R.; Wang, G. H., Adv. Mater. 2001, 13, 1883.
    連結:
  14. (38) Yang, Z. H.; Gu, Y. L.; Chen, L. Y.; Shi, L.; Ma, J. H.; Qian, Y. T., Solid State Commun. 2004, 130, 347.
    連結:
  15. (39) Liu, H.; Hu, C. G.; Wang, Z. L., Nano Lett. 2006, 6, 1535.
    連結:
  16. (42) Mao, Y. B.; Park, T. J.; Zhang F.; Zhou, H. J.; Wong, S. S., Small 2007, 3, 1122
    連結:
  17. (43) Byrappa K.; Ohachi T., Crystal growth technology 2002.
    連結:
  18. (44) Strohaver, R. A., A scanning electron microscope comparison of microfilied fixed prosthodon 1987.
    連結:
  19. (45) Ishikawa, K.; Uemori, T., Phys. Rev. B 1999, 60, 11841.
    連結:
  20. (46) Eckert, J. O.; HungHouston, C. C.; Gersten, B. L.; Lencka, M. M.; Riman, R. E., J. Am. Ceram. Soc. 1996, 79, 2929.
    連結:
  21. (1) Auciello, O.; Scott, J. F.; Ramesh, R., Phys. Today 1998, 51, 22.
  22. (2) Scott, J. F. In Ferroelectric memories today, Prague, Czech Republic, Jul 12-16, 1999; Gordon Breach Sci Publ Ltd: Prague, Czech Republic, 1999; pp 247.
  23. (4) Phule, P. P.; Risbud, S. H., J. Mater. Sci. 1990, 25, 1169.
  24. (5) Kishi, H.; Mizuno, Y.; Chazono, H., Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 2003, 42, 1.
  25. (9) Hu, J. T.; Odom, T. W.; Lieber, C. M., Accounts Chem. Res. 1999, 32, 435.
  26. (11) Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P., Science 2000, 290, 2126.
  27. (12) Liang, W. J.; Bockrath, M.; Bozovic, D.; Hafner, J. H.; Tinkham, M.; Park, H., Nature 2001, 411, 665.
  28. (13) Geneste, G.; Bousquet, E.; Junquera, J.; Ghosez, P., Appl. Phys. Lett. 2006, 88, 3.
  29. (15) Spanier, J. E.; Kolpak, A. M.; Urban, J. J.; Grinberg, I.; Lian, O. Y.; Yun, W. S.; Rappe, A. M.; Park, H., Nano Lett. 2006, 6, 735.
  30. (16) Wang, Z. Y.; Suryavanshi, A. P.; Yu, M. F., Appl. Phys. Lett. 2006, 89, 3.
  31. (17) Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H., J. Am. Chem. Soc. 2002, 124, 1186.
  32. (18) Joshi, U. A.; Lee, J. S., Small 2005, 1, 1172.
  33. (19) Kang, S. O.; Park, B. H.; Kim, Y. I., Cryst. Growth Des. 2008, 8, 3180.
  34. (20) Hayashi, Y.; Kimura, T.; Yamaguchi, T., J. Mater. Sci. 1986, 21, 757.
  35. (21) Mao, Y. B.; Banerjee, S.; Wong, S. S., J. Am. Chem. Soc. 2003, 125, 15718.
  36. (23) Yoon, K. H.; Cho, Y. S.; Kang, D. H., J. Mater. Sci. 1998, 33, 2977.
  37. (24) Kimura, T.; Yamaguchi, T., Ceramics International 1983, 9, 13.
  38. (26) Pertsev, N. A.; Zembilgotov, A. G.; Tagantsev, A. K., Phys. Rev. Lett. 1998, 80, 1988.
  39. (27) Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M., Science 2001, 293, 1289.
  40. (28) Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P., Nature 2000, 404, 59.
  41. (29) Schrott, A. G.; Misewich, J. A.; Nagarajan, V.; Ramesh, R., Appl. Phys. Lett. 2003, 82, 4770.
  42. (31) Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., Adv. Mater. 2003, 15, 353.
  43. (32) Willert, M.; Rothe, R.; Landfester, K.; Antonietti, M., Chem. Mat. 2001, 13, 4681.
  44. (37) Xu, C. K.; Zhao, X. L.; Liu, S.; Wang, G. H., Solid State Commun. 2003, 125, 301.
  45. (40) Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F., Adv. Mater. 2006, 18, 3275.
  46. (41) Tian, Y.; Chen, D. R.; Jiao, X. L., Chem. Mat. 2006, 18, 6088.