Translated Titles

Reactive Phenomenon between Molten Ti and Al2O3/Y2O3/ZrO2 Composites





Key Words

氧化鋯 ; 氧化釔 ; 氧化鋁 ; 擴散反應 ; ZrO2 ; Y2O3 ; Al2O3 ; Diffusion reaction



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

以燒結法製備不同組成之Al2O3/Y2O3/ZrO2陶瓷試片,與鈦金屬在1 atm氬(Ar)氣氛下,進行1700℃與2小時之高溫擴散反應,探討在此參數下,陶瓷材料與鈦金屬高溫擴散介面反應之影響。本實驗用X光繞射儀(x-ray diffraction, XRD)、掃描式電子顯微鏡(SEM/EDS),以及穿透式電子顯微鏡(TEM/EDS),分析擴散後介面反應微觀結構。   各組陶瓷試片與鈦金屬經熔融擴散反應後,在鈦側處會產生鈦鋁合金,隨著氧化鋁比例上升而反應變劇烈,鈦側看到Ti、Zr置換後的Ti2ZrAl;而陶瓷深處則會產生許多化合物,其中包含:ZrO2、TiAl、Y3Al5O12(YAG)、YAlO3、Y2O3、Al3Zr…等。其中當氧化鋁比例含量超過pecolation threshold,便會在陶瓷裡形成內通路,鈦便可在此內通路進行擴散至陶瓷深處,因此整體抑制鈦擴散的效果非常差,造成微觀結構與其他組成差異非常大。   在其中4組與鈦熔融擴散反應後,發現YAG在擴散反應過程有著重要的角色,故將YAG特別討論,單獨跟Ti做高溫熔融擴散反應。

English Abstract

Various Al2O3/Y2O3/ZrO2 as sintering sample was reacted with titanium at 1700 °C/2 hr in argon. Analyzing the microstructure of the reaction interface was characterized with XRD, SEM/EDS, and TEM/EDS after reaction. There were forming TiAl Alloys on Ti side after diffusion reaction, and the reactions were more violent with the Al2O3 content increase, so the phase transited to Ti2ZrAl by Zr took Ti place. So many compounds be observed, including ZrO2, TiAl, Y3Al5O12(YAG), YAlO3, Y2O3, Al3Zr, etc. When Al2O3 content exceed the percolation threshold, the interconnecting network would be formed. Due to Ti diffused into the ceramics deeply by this network, the microstructure different from the other specimens. In four groups with the titanium melt diffusion reaction, the reaction in the diffusion process that YAG has an important role, it will be specifically discussed YAG and Ti melt diffusion reaction with the same temperature and time.

Topic Category 工學院 > 材料科學與工程系所
工程學 > 工程學總論
  1. 3. R. L. Saha and K. T. Jacob (1986). “Casting of Titanium and It's Alloy.” Def. Sci., 36(2): 121-141.
  2. 4. Welsch, G. and W. Bunk (1982). "Deformation Modes of the Alpha-Phase of Ti-6al-4v as a Function of Oxygen Concentration and Aging Temperature." Metallurgical Transactions a-Physical Metallurgy and Materials Science 13(5): 889-899.
  3. 5. Lin, C. C., Y. W. Chang, et al. (2008). "Effect of yttria on interfacial reactions between titanium melt and hot-pressed yttria/zirconia composites at 1700 ℃." Journal of the American Ceramic Society 91(7): 2321-2327.
  4. 10. G. M. Wolten, ” Diffusionless Phase Transformations in Zirconia and Hafnia,” J. Am. Ceram. Soc. 46 [9] 418-422, (1963).
  5. 11. A. H. Heuer, N. Claussen, W. M. Kriven, M. Ruhle, ”Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceramic.Soc. 65 [12] 642-650, (1982).
  6. 13. Yong-Nian Xu; Zhong-quan Gu; W. Y. Ching. Electronic, structural, and optical properties of crystalline yttria. Phys. Rev.. 1997, B56: 14993–15000.
  7. 14. L. Keith Hudson, Chanakya Misra, Anthony J. Perrotta, Karl Wefers, F. S. Williams “Aluminum Oxide” in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH, Weinheim.
  8. 15. Omori, M., Isobe, T. and Hirai, T. (2000), Consolidation of Eutectic Powder of Al2O3–GdAlO3. Journal of the American Ceramic Society, 83: 2878–2880.
  9. 16. M. S. Scholl and J. R. Trimmier, “Luminescence of YAG:(Tm,Tb),” J. Elec- trochem. Soc., 133 [3] 643–48 (1986).
  10. 17. Saiki, T; Imasaki, K; Motokoshi, S; Yamanaka, C; Fujita, H; Nakatsuka, M; Izawa, Y (2006). "Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp". Optics Communications 268 (1): 155.
  11. 18. R. Ruh, N. M. Tallan, and H. A. Lipsitt, “Effect of Metal Addition on the Microstructure of Zirconia,” J. Am. Ceram. Soc. 47[12], 632-635 (1964).
  12. 19. R. Ruh, “Reaction of Zirconia and Titaniumat Elevated Temperatures,” J. Am. Ceram. Soc. 46[7], 301-306, (1976).
  13. 22. C. L. Lin, D. Gan, P. Shen, “Stabilization of zirconia sintered with Titanium,” J. Am. Ceram. Soc. 71[8], 624-629 (1988).
  14. 23. B. C. Weber, W. M. Thompson, H. O. Bielstein, M. A. Schwarts, “Ceramic crucible for Melting Titanium,” J. Am. Ceram. Vol. 40[11], 363-373 (1957).
  15. 24. K.F. Lin and C. C. Lin, “Transmission Electron Microscope
  16. Investigation of the Interface between Titanium and Zirconia,” J. Am. Ceram. Soc., 82[11], 3179-85 (1999).
  17. 25. K. L. Lin and C. C. Lin, “Ti2ZrO Phases Formed in the Titanium and Zirconia Interface after Reaction at 1550oC,” J. Am. Ceram. Soc., 88 [5] 1268-72 (2005).
  18. 26. Zalar, A., B. M. M. Baretzky, et al. (1999). "Interfacial reactions in Al2O3/Ti, Al2O3/Ti3Al and Al2O3/TiAl bilayers." Thin Solid Films 352(1-2): 151-155.
  19. 27. W. D. Tuohig and T. Y. Tien, J. Am. Ceram. Soc., 63 [9-10] 595-596 (1980).
  20. 29. K. F. Lin and C. C. Lin, “Interfacial Reaction between Zirconia and Titanium,” Scripta Materialia, Vol. 39, No. 10, 1333-1338 (1998).
  21. 30. R. L. Saha and T. K. Nandy, R. D. K. Misra, and K. T. Jacob, “On the Evaluation of Stability of Rare Earth Oxides Face Coat for Investment Casting of Titanium,” Metal. Trans. B. 21B[6] 559-566 (1990).
  22. 31. Mishin, Y. and C. Herzig (2000). "Diffusion in the Ti-Al system." Acta Materialia 48(3): 589-623.
  23. 32. Das, K., P. Choudhury, et al. (2002). "The Al-O-Ti (aluminum- oxygen-titanium) system." Journal of Phase Equilibria 23(6): 525-536.
  24. 35. Ravi, C., S. MathiJaya, et al. (2002). "Site preference of Zr in Ti3Al and phase stability of Ti2ZrAl." Physical Review B 65(15).
  25. 1. 倪國裕,“鈦與鈦合金之熔煉”鑄造月刊,一一七期,民國88年6月。
  26. 2. 侯貫智,“2009非金屬特輯 鈦金屬篇”,財團法人金屬工業研究發展中心,民國98年9月。
  27. 6. Eugene P. Lautenschlager, Peter Monaghan, “Titanium And Titanium Alloy as Dental Materials,” International Dental Journal, [43]245-531, (1993).
  28. 7. Molchanova. E. K, “Phase Diagrams of Titanium Alloy,” [Transl. Of Atlas Diagram Sostoyaniya Titanovyk Splavov], Israel Program for Scientific Translations. (1965).
  29. 8. 周振嘉, “氧化鋯陶瓷中的麻田散鐵相變化與韌化”十三卷一期,民國83年1月。
  30. 9. 李源弘、張文固,“氧化鋯至製備與應用”化工技術,一卷六期,民國82年9月。
  31. 12. R. C. Garvie, R. H. Hannik and R. T. Pascoe, “Ceramic Steel,” Nature Vol.258 (1975), p.703.
  32. 20. D. V. Igator, M. S. Model, L. F. Sokyriansky, and A. Ya. Shinyaev, “Parameters of Oxygen Diffuison in Alpha and Beta-form of Titanium,” Bri. Ceram. Trans., 2536-2544 (1972).
  33. 21. K. F. Lin and C. C. Lin, “Interface Reaction between Ti-6Al-4V alloy and Zirconia mold during casting,” J. Mater. Sci., 34. 5899-5906 (1999).
  34. 28. Kesten, Harry (2006), "What Is ... Percolation?", Notices of the American Mathematical Society (Providence, RI: American Mathematical Society) 53 (5): 572–573.
  35. 33. Rosa, C. J. (1970). "Oxygen diffusion in alpha and beta titanium in the temperature range of 932° to 1142°C." Metallurgical and Materials Transactions B 1: 2517-2522.
  36. 34. Materials Science International Team MSIT, and Tretyachenko, Ludmila: Al-Ti-Zr (Aluminium - Titanium - Zirconium). Effenberg, G., Ilyenko, S. (ed.). SpringerMaterials - The Landolt-Brnstein Database.
  37. 36. Leverkoehne, M., R. Janssen, et al. (2002). "Phase development of ZrxAly-Al2O3 composites during reaction sintering of Al/ZrO2/Al2O3 powder mixtures." Journal of Materials Science Letters 21(2): 179-183.
Times Cited
  1. 洪碧娟(2013)。添加物對釔安定氧化鋯/氧化鋁複合材料機械性質之影響。臺北科技大學材料及資源工程系研究所學位論文。2013。1-104。