Title

硫摻雜二氧化鈦奈米管陣列於染料敏化太陽能電池之應用

Translated Titles

Sulfur-doped titanium dioxide nanotube arrays in dye-sensitized solar cells applications

DOI

10.6842/NCTU.2011.00785

Authors

楊立誠

Key Words

硫摻雜 ; sulfur-dop

PublicationName

交通大學應用化學系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

刁維光

Content Language

繁體中文

Chinese Abstract

本論文介紹兩種在二氧化鈦奈米管(TNT)中硫摻雜的方式,來有效提升電子的傳輸效率,並期望進一步提升染料敏化太陽能電池的元件效能。首先我們將陽極處理法成長完之二氧化鈦奈米管燒結至290 °C,再利用水熱摻雜法和電泳摻雜法兩種方式將硫摻雜進去;其中水熱摻雜法利用硫尿(thiourea, TU) 作為硫的前驅物在水熱反應中進行摻雜,隨著TU濃度的提升,可以由XPS看到硫摻雜的含量也會隨之增加,並在濃度為1M時電流密度可以從未摻雜之10.92 mA/cm2上升到11.78 mA/cm2,整體效率由5.77%增為6.35%。而電泳摻雜法將硫的前驅物乙硫醯氨(thioacetamide, TA)與氨水溶液反應產生帶負電之HS-離子,再藉由電泳的方式摻雜入TNT結構中。隨TA濃度的提升,硫摻雜的含量亦隨之增加,同樣也可看到電流密度明顯的提昇,並在濃度為2M時電流密度可上升到11.95 mA/cm2,整體元件效能上由未摻雜之5.65%提昇到6.19%。由IMPS/IMVS量測結果顯示,硫摻雜之TNT的電傳輸能力有明顯的改善,另外由XPS可發現硫以S4+及S6+形式摻雜於結構中,當S6+取代Ti4+後會有陽離子電荷上的差異,可以有效提升二氧化鈦整體結構中的電子載子濃度,進一步提升光電流和整體光電轉換效率。

English Abstract

In this thesis, we report two methods to enhance the high charge-collection efficiency of the device by doping non-metallic element, S, into TiO2 nanotube (TNT) arrays for dye-sensitized solar cells (DSSC). The as-anodized TNT was sintered to 290 °C to remove solvent and organic impurities. At this amorphous phase, it is facile for sulfur doped to the oxygen and titanium defects of TiO2. Here, two post-treatments were carried out to fabricate S-doped TNT, the hydrothermal doping method and electrophoresis doping method. Hydrothermal reactions occured with the sulfur precursor thiourea (TU), inside the as-annealed TNT at 105 °C for 4h. The XPS resuts show that the amount of S increases as increasing the concentration of TU. The DSSC device made of the S-TNT electrode attained efficiency ƞ = 6.35% of power conversion, which is 10% enhanced from the un-doped TNT device (ƞ = 5.77%). In the electrophoresis doping method, theTNT film was immered in the ammonia solution containing sulfur precursor, thioacetamide (TA). The S-doped TNT was fabricated through electrophoresis at a bias potential 0.5V. The S-TNT DSSC shows a significantly improved cell performance compared to that of the un-doped TNT-DSSC (ƞ = 6.19% vs. 5.65%) owing to the much higher Jsc of the former than the latter (11.95 vs. 10.77 mA cm-2). According to the results of IMPS/IMVS, the electron transport properties of TNT-DSSC were improved significantly by doping with sulfur due to the increased electron carrier concentration inducing by substitution of the Ti4 + sites with S6+, which results in an enhanced photocurrent and overall power conversion efficiency.

Topic Category 基礎與應用科學 > 化學
理學院 > 應用化學系所
Reference
  1. 1. Minoura, H., J. Phys. Chem. B 2004, 108,2227-2235.
    連結:
  2. 2. Zhao, J. H.; Wang, A. H.; Green, M. A.; Ferrazza, F., Appl. Phys. Lett. 1998, 73,1991-1993.
    連結:
  3. 4. Ferekides, C., Appl. Phys. Lett. 1993, 62,2851.
    連結:
  4. 10. Gratzel, M., J. Am. Chem. Soc. 1993, 115,6382-6390.
    連結:
  5. 11. Gratzel, M., Inorg. Chem. 2005, 44,6841-6851.
    連結:
  6. 18. Mor, G. K.; Varghese, O. K.; Paulose, M.; Shankar, K.; Grimes, C. A., Sol. Eng. Mater. Sol. Cell 2006, 90,2011-2075.
    連結:
  7. 20. Ferrere, S.; Gregg, B. A., J. Phys. Chem. B 2001, 105,7602-7605.
    連結:
  8. 24. Lin, C.; Tsai, F. Y.; Lee, M. H.; Lee, C. H.; Tien, T. C.; Wang, L. P.; Tsai, S. Y., J. Mater. Chem. 2009, 19,2999-3003.
    連結:
  9. 25. Jung, H. S.; Lee, J.-K.; Nastasi, M.; Kim, J.-R.; Lee, S.-W.; Kim, J. Y.; Park, J.-S.; Hong, K. S.; Shin, H., Appl. Phys. Lett. 2006, 88,013107.
    連結:
  10. 26. Lucky, R. A.; Charpentier, P. A., Adv. Mater. 2008, 20,1755-1759.
    連結:
  11. 31. Asahi, R., Science 2001, 293,269-271.
    連結:
  12. 39. Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H.; Wong, P. K.; Zhao, J. C., Environ. Sci. Technol. 2005, 39,1175-1179.
    連結:
  13. 49. Balcerski, W.; Ryu, S. Y.; Hoffmann, M. R., J. Phys. Chem. C 2007, 111,15357-15362.
    連結:
  14. 51. Murakami, Y.; Kasahara, B.; Nosaka, Y., Chem. Lett. 2007, 36,330-331.
    連結:
  15. 54. Li, H.; Zhang, X.; Huo, Y.; Zhu, J., Environ. Sci. Technol. 2007, 41,4410-4414.
    連結:
  16. 57. Sakthivel, S.; Kisch, H., Angew. Chem. Int. Ed. 2003, 42,4908-4911.
    連結:
  17. 60. Hou, Q.; Zheng, Y.; Chen, J.-F.; Zhou, W.; Deng, J.; Tao, X., J. Mater. Chem. 2011, 21,3877.
    連結:
  18. 63. Linklater, R., J. Phys. Chem. C 2011.
    連結:
  19. 3. Meier, J.; Spitznagel, J.; Kroll, U.; Bucher, C.; Fay, S.; Moriarty, T.; Shah, A., Thin Solid Films 2004, 451,518-524.
  20. 5. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G., Phys. Rev. Lett 1977, 39,1098-1101.
  21. 6. Bozano, L.; Carter, S. A.; Scott, J. C.; Malliaras, G. G.; Brock, P. J., Appl. Phys. Lett. 1999, 74,1132-1134.
  22. 7. Hide, F.; Schwartz, B. J.; DiazGarcia, M. A.; Heeger, A. J., Chem. Phys. Lett. 1996, 256,424-430.
  23. 8. Savenije, T. J.; Warman, J. M.; Goossens, A., Chem. Phys. Lett. 1998, 287,148-153.
  24. 9. Eckert, J. F.; Nicoud, J. F.; Nierengarten, J. F.; Liu, S. G.; Echegoyen, L.; Barigelletti, F.; Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G., J. Am. Chem. Soc. 2000, 122,7467-7479.
  25. 12. Chou, T. P.; Zhang, Q. F.; Russo, B.; Fryxell, G. E.; Cao, G. Z., J. Phys. Chem. C 2007, 111,6296-6302.
  26. 13. Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S., Mater. Sci. Eng., R 2009, 63,81-99.
  27. 14. Sauvage, F.; Di Fonzo, F.; Li Bassi, A.; Casari, C. S.; Russo, V.; Divitini, G.; Ducati, C.; Bottani, C. E.; Comte, P.; Graetzel, M., Nano Lett. 2010, 10,2562-2567.
  28. 15. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., Nat. Mater. 2005, 4,455-459.
  29. 16. Jennings, J. R.; Ghicov, A.; Peter, L. M.; Schmuki, P.; Walker, A. B., J. Am. Chem. Soc. 2008, 130,13364-13372.
  30. 17. Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S., Nanotechnology 2007, 18.
  31. 19. Rani, S.; Roy, S. C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Kim, S.; Yoriya, S.; LaTempa, T. J.; Grimes, C. A., Phys. Chem. Chem. Phys. 2010, 12,2780-2800.
  32. 21. Jung, H. S.; Lee, J.-K.; Lee, S.; Hong, K. S.; Shin, H., J. Phys. Chem. C 2008, 112,8476-8480.
  33. 22. Liu, G.; Wang, L.; Yang, H. G.; Cheng, H.-M.; Lu, G. Q., J. Mater. Chem. 2010, 20,831.
  34. 23. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R., Chem. Commun. 2002,1464-1465.
  35. 27. Finazzi, E.; Di Valentin, C.; Pacchioni, G., J. Phys. Chem. C 2009, 113,220-228.
  36. 28. Feng, X.; Shankar, K.; Paulose, M.; Grimes, C. A., Angewandte Chemie 2009, 121,8239-8242.
  37. 29. Yang, M.; Kim, D.; Jha, H.; Lee, K.; Paul, J.; Schmuki, P., Chem. Commun. 2011, 47,2032.
  38. 30. Liu, Y. J.; Szeifert, J. M.; Feckl, J. M.; Mandlmeier, B.; Rathousky, J.; Hayden, O.; Fattakhova-Rohlfing, D.; Bein, T., Acs Nano 2010, 4,5373-5381.
  39. 32. Park, J. H.; Kim, S.; Bard, A. J., Nano Lett. 2006, 6,24-28.
  40. 33. Jiang, Z.; Yang, F.; Luo, N.; Chu, B. T. T.; Sun, D.; Shi, H.; Xiao, T.; Edwards, P. P., Chem. Commun. 2008,6372.
  41. 34. Li, J. Y.; Lu, N.; Quan, X.; Chen, S.; Zhao, H. M., Ind. Eng. Chem. Res. 2008, 47,3804-3808.
  42. 35. Tian, H.; Hu, L.; Zhang, C.; Chen, S.; Sheng, J.; Mo, L.; Liu, W.; Dai, S., J. Mater. Chem. 2011, 21,863.
  43. 36. Liu, S.; Chen, X., Journal of Hazardous Materials 2008, 152,48-55.
  44. 37. Rockafellow, E. M.; Stewart, L. K.; Jenks, W. S., Applied Catalysis B: Environmental 2009, 91,554-562.
  45. 38. Tang, X. H.; Li, D. Y., J. Phys. Chem. C 2008, 112,5405-5409.
  46. 40. Znad, H.; Kawase, Y., Journal of Molecular Catalysis A: Chemical 2009, 314,55-62.
  47. 41. Lin, L.; Lin, W.; Zhu, Y.; Zhao, B.; Xie, Y., Chem. Lett. 2005, 34,284-285.
  48. 42. Ghicov, A.; Macak, J. M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P., Nano Lett. 2006, 6,1080-1082.
  49. 43. Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X., J. Phys. Chem. B 2003, 108,1230-1240.
  50. 44. Cong, Y.; Zhang, J.; Chen, F.; Anpo, M., J. Phys. Chem. C 2007, 111,6976-6982.
  51. 45. Aita, Y.; Komatsu, M.; Yin, S.; Sato, T., J. Solid State Chem. 2004, 177,3235-3238.
  52. 46. Shen, L.; Guo, L.; Bao, N.; Yanagisawa, K., Chem. Lett. 2003, 32,826-827.
  53. 47. Martyanov, I. N.; Uma, S.; Rodrigues, S.; Klabunde, K. J., Chem. Commun. 2004,2476-2477.
  54. 48. Livraghi, S.; Paganini, M. C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G., J. Am. Chem. Soc. 2006, 128,15666-15671.
  55. 50. Fang, J.; Wang, F.; Qian, K.; Bao, H.; Jiang, Z.; Huang, W., J. Phys. Chem. C 2008, 112,18150-18156.
  56. 52. Ohno, T.; Mitsui, T.; Matsumura, M., Chem. Lett. 2003, 32,364-365.
  57. 53. Umebayashi, T.; Yamaki, T.; Tanaka, S.; Asai, K., Chem. Lett. 2003, 32,330-331.
  58. 55. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Science 2002, 297,2243-2245.
  59. 56. Mohapatra, S. K.; Misra, M.; Mahajan, V. K.; Raja, K. S., J. Phys. Chem. C 2007, 111,8677-8685.
  60. 58. Shen, M.; Wu, Z.; Huang, H.; Du, Y.; Zou, Z.; Yang, P., Mater. Lett. 2006, 60,693-697.
  61. 59. Ma, T. L.; Akiyama, M.; Abe, E.; Imai, I., Nano Lett. 2005, 5,2543-2547.
  62. 61. Kruger, J.; Plass, R.; Gratzel, M.; Cameron, P. J.; Peter, L. M., J. Phys. Chem. B 2003, 107,7536-7539.
  63. 62. Schlichthorl, G.; Park, N. G.; Frank, A. J., J. Phys. Chem. B 1999, 103,782-791.
  64. 64. Park, S.-M.; Ikegami, T.; Ebihara, K., Japanese Journal of Applied Physics 2005, 44,8027-8031.
  65. 65. Serier, H.; Gaudon, M.; Ménétrier, M., Solid State Sciences 2009, 11,1192-1197.
  66. 66. Takata, S., Japanese Journal of Applied Physics 1984.