Title

研究藉由多閘極製程改善成長於矽基板上之氮化鋁鎵/氮化鎵高速電子遷移率電晶體元件之線性度

Translated Titles

Study of Device Linearity Improvement for the AlGaN/GaN HEMTs on Silicon Substrate by Using Multi-Gate Process

DOI

10.6842/NCTU.2011.00834

Authors

黃冠寧

Key Words

氮化鎵 ; 三階交叉點 ; 多閘極 ; 八十奈米閘極線寬 ; lGaN/GaN High Electron Mobility Transistors ; GaN ; 80 nm gate length ; multi-gate ; third order intermodulation point

PublicationName

交通大學材料科學與工程系所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

張翼

Content Language

英文

Chinese Abstract

本實驗中,成功的製作出八十奈米閘極線寬的氮化鎵高電子移動率電晶體,並且進一步利用創新的多閘極技術,使元件在線性度上有顯著的改善。在單閘極八十奈米閘極的氮化鎵高電子遷移率電晶體中,元件展現出高飽和電流,高轉導性和高電流增截止頻率特性。但是因為短通道效應,造成元件有較高的漏電流,此一現象經過討論是可以進一步藉由閘極蝕刻技術來改善短通道效應和抑制閘極漏電流。 然而,在八十奈米閘極線寬下,由於高電場的因素,使得速度過衝效應很容易產生。在此實驗中,成功的製造出多閘極元件,在實驗數據的分析與資料的佐證下,發現多閘極可以有效的改善高電場現象,讓電子在多閘極區域下,有著較穩定的電子速度,進一步抑制速度過衝效應,使元件可以在較大的VGS範圍下,IDS有著穩定的上升率,並且維持平穩的轉導值,有效的改善元件線性度,同時具有奈米極線寬元件的特性。經過量測得到元件的三階交叉點在三閘極結構下,可達30.5dBm的最高值。此外,此研究中還比較了在不同閘極操作偏壓下,多閘極與單閘極的三階交叉點表現,利用分析IDS對VGS的關係式,成功解釋多閘極可以在較大的IDSS%範圍下,有著高三階交叉點。由上述分析可知,多閘極技術可以有效的提升元件線性度特性。由此可知,在未來多閘極氮化鎵高電子遷移率電晶體可有效地應用在無線通訊系統中的射頻功率放大器。

English Abstract

In this study, the 80 nm gate length AlGaN/GaN High Electron Mobility Transistors were successfully fabricated. Moreover, by using the innovative multi-gate technique, the linearity of devices has significant improvement. In the 80nm gate length AlGaN/GaN HEMTs, the devices possessed high saturation current, high transconductance and high current-gain cut-off frequency. However, the short channel effect led to the high leakage current. After the discussion, this phenomenon could be improved by using the gate recess technique to suppress the short channel effect and gate leakage current. Nevertheless, due to the high electric field under the gate domain, the electron over shoot effect could be observed in 80 nm gate length devices. In this study, the multi-gate devices were successfully fabricated. By the experiment data analysis and paper evidence, it could be found that multi-gate effectively reduced the high electric field. It made the electron possessed a stable electron velocity under the gate domain and further to suppress the velocity overshoot effect. The multi-gate devices could stably increase the drain current and maintain the transconductance value under a larger gate bias region; furthermore, multi-gate devices possessed the electrical characteristic as same as the nanometer gate length device. After the measurement, the maximum third order intermodulation point (IP3) of 30.54 dBm could be achieved in the triple-gate devices. It shown that multi gate could effectively improve the linearity of devices. In addition, the third order intermodulation points of the multi-gate and single gate device under the different gate bias are also compared in this study. By analyzing the function of IDS versus VGS, It could successfully demonstrated that the multi-gate device have the higher IP3 in the larger IDSS % region. Therefore, it could be known that multi gate technique could effectively improve the linearity performance. In the future, the multi-gate AlGaN/GaN HEMTs have the great potential to be the RF power amplifier applied in the modern wireless communication system.

Topic Category 工學院 > 材料科學與工程系所
工程學 > 工程學總論
Reference
  1. Chapter 1
    連結:
  2. [1-2] Jean-Claude Gerbedoen, Ali Soltani, Sylvain Joblot, Jean-Cluade De jaeger, Christophe Gaquiere, Yvon Cordier, and Fabrice Semond,“AlGaN/GaN HEMT on (001) Silicon Substrate With Powe Density Performance of 2.9 W/mm at 10GHz,” IEEE Trans. Electron Device 57, 7 (2010).
    連結:
  3. [1-3] L.Wang, W.D.Hu, X.S. Chen, and W. Lu,“ The Role of Ultrathin AlN in the Reduction in the Hot Electron and Self-Heating Effects for GaN-Base Double Heterojunction High Electron Mobility Transistors,” Journal of Applied Physics 108,054501(2010)
    連結:
  4. [1-4] Haifeng Sun, Andreas R. Alt, Hansruedi Benedickter, C. R. Bolognesi, Eric Feltin, Jean-Francois Carlin, Marcus Gonschorek, Nicolas Grandjean,“Ultrahigh-Speed AllnN/GaN high Electron Mobility TransistorsGrown on (111) High-Resistivity Silicon with FT=143,” Applied Physics Express 3, 094101 (2010).
    連結:
  5. [1-6] Yueh-Chin Lin, Edward Yi Chang, Hiroshi Yamaguchi, Wei-Cheng Wu, and Chun-Yen Chang, “A δ-Doped InGaP/InGaAs pHEMT With Different Doping Profiles for Device-Linearity Improvement,” IEEE Transaction on Electron Devices, vol. 54, no. 7, July 2007.
    連結:
  6. [2-1] U.K. Mishra, P. Parikh, Y.F. Wu, ”AlGaN/GaN HEMTs: An overview of device operation and applications,” Processdings of The IEEE, Vol. 90,No.6, June 2002.
    連結:
  7. [2-2]Chien-chi Lee,”GaN-Based Heterostructure Field Effect Transistors “ June 2006
    連結:
  8. [2-3] O. Ambacher,a) J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy,W. J. Schaff, and L. F. Eastman,” Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics Volume 85, Number 6 ,15 March, 1999
    連結:
  9. [2-4] J. A. Garrido, J. L. Sa´nchez-Rojas, A. Jime´nez, and E. Mun˜oz, F. Omnes and P. Gibart,” Polarization fields determination in AlGaN/GaN heterostructure field-effect
    連結:
  10. [2-5]Vorgelegt von,M.Sc. Eng.,Ibrahim Khalil,and Barisal, Bangladesch,” Intermodulation Distortion in GaN HEMT,”17.07.2009
    連結:
  11. [2-6] Toshihiro Ohki, Toshihide Kikkawa, Yusuke Inoue, Masahito Kanamura, Naoya Okamoto,Kozo Makiyama, Kenji Imanishi, Hisao Shigematsu, Kazukiyo Joshin, and Naoki Hara,” Reliability of GaN HEMTs:Current Status and Future Technology,” IEEE 47th Annual International Reliability, Physics Symposium, Montreal, 2009
    連結:
  12. [2-7] Jean-Claude Gerbedoen, Ali Soltani, Sylvain Joblot, Jean-Cluade De jaeger, Christophe Gaquiere, Yvon Cordier, and Fabrice Semond,“AlGaN/GaN HEMT on (001) Silicon Substrate With Powe Density Performance of 2.9 W/mm at 10GHz,” IEEE Trans. Electron Device 57, 7 (2010).
    連結:
  13. [3-1]Vorgelegt von,M.Sc. Eng.,Ibrahim Khalil,and Barisal, Bangladesch,” Intermodulation Distortion in GaN HEMT,”17.07.2009
    連結:
  14. [4-1]Chien-Ying Wu,”Study of High and Low Voltage InAs-Channle Quantum Well Field Effrct Transistors for RF and Logic Applications,” July 2009.
    連結:
  15. [5-2] Jean-Claude Gerbedoen, Ali Soltani, Sylvain Joblot, Jean-Cluade De jaeger, Christophe Gaquiere, Yvon Cordier, and Fabrice Semond,“AlGaN/GaN HEMT on (001) Silicon Substrate With Powe Density Performance of 2.9 W/mm at 10GHz,” IEEE Trans. Electron Device 57, 7 (2010).
    連結:
  16. [5-3] L.Wang, W.D.Hu, X.S. Chen, and W. Lu,“ The Role of Ultrathin AlN in the Reduction in the Hot Electron and Self-Heating Effects for GaN-Base Double Heterojunction High Electron Mobility Transistors,” Journal of Applied Physics 108,054501(2010)
    連結:
  17. [5-4] Haifeng Sun, Andreas R. Alt, Hansruedi Benedickter, C. R. Bolognesi, Eric Feltin, Jean-Francois Carlin, Marcus Gonschorek, Nicolas Grandjean,“Ultrahigh-Speed AllnN/GaN high Electron Mobility TransistorsGrown on (111) High-Resistivity Silicon with FT=143,” Applied Physics Express 3, 094101 (2010).
    連結:
  18. [5-6]Chien-Ying Wu,“Study of High Speed and Low Voltage InAs-channel Quantum Well Field Effect Transistors for RF and Logic Applications,” (2009)
    連結:
  19. [5-7] Gregg H. Jessen, Robert C. Fitch, Jr., , James K. Gillespie, Glen Via, Antonio Crespo, Derrick Langley, Daniel J. Denninghoff, Manuel Trejo, Jr. , and Eric R. Heller,’’ Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices,” IEEE Trans. Electron Device
    連結:
  20. [5-9] I. Adesida, “High performance recessed gate AlGaN–GaN HEMTs on sapphire,” in Proc. TWHM, Jan. 2003, pp. 102–103.
    連結:
  21. [5-11] E. J. Miller, X. Z. Dang and E. T. Yua,’’ Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” Journal of Applied Physics 88, 10 (2000).
    連結:
  22. [5-13] Masataka HIGASHIWAKI1, Takashi MIMURA1;2 and Toshiaki MATSUI1,’’ 30-nm-Gate AlGaN/GaN Heterostructure Field-Effect Transistors with a Current-Gain Cutoff Frequency of 181 GHz,” Japanese Journal of Applied Physics 45, 42( 2006).
    連結:
  23. Chapter 6
    連結:
  24. [6-1] Yueh-Chin Lin, Edward Yi Chang, Hiroshi Yamaguchi, Wei-Cheng Wu, and Chun-Yen Chang, “A δ-Doped InGaP/InGaAs pHEMT With Different Doping Profiles for Device-Linearity Improvement,” IEEE Transaction on Electron Devices, vol. 54, no. 7, July 2007.
    連結:
  25. [6-2] K. Y. Hur, K. T. Hetzler, R. A. McTaggart, D. W. Vye, P. J. Lemonias and W. E. Hoke, ”Ultralinear double pulse doped AlInAs/GaInAs/InP HEMTs,” Electronics Lett., vol. 32, no. 16, pp. 1516-1517, 1996.
    連結:
  26. [6-3] Jean-Claude Gerbedoen, Ali Soltani, Sylvain Joblot, Jean-Cluade De jaeger, Christophe Gaquiere, Yvon Cordier, and Fabrice Semond,“AlGaN/GaN HEMT on (001) Silicon Substrate With Powe Density Performance of 2.9 W/mm at 10GHz,” IEEE Trans. Electron Device 57, 7 (2010).
    連結:
  27. [6-5] L.Wang, W.D.Hu, X.S. Chen, and W. Lu,“ The Role of Ultrathin AlN in the Reduction in the Hot Electron and Self-Heating Effects for GaN-Base Double Heterojunction High Electron Mobility Transistors,” Journal of Applied Physics 108,054501(2010)
    連結:
  28. [6-6] Haifeng Sun, Andreas R. Alt, Hansruedi Benedickter, C. R. Bolognesi, Eric Feltin, Jean-Francois Carlin, Marcus Gonschorek, Nicolas Grandjean,“Ultrahigh-Speed AllnN/GaN high Electron Mobility TransistorsGrown on (111) High-Resistivity Silicon with FT=143,” Applied Physics Express 3, 094101 (2010).
    連結:
  29. [6-8] Zhaojun Lin and Wu Lu, “Inflluence of Ni Schottky Contact Area on Two-Dimensional Electron-Gas Sheet Carrier Concentration of Strained AlGaN/GaN Heterostructures,” Journal of Applied Physics 99, 014504 (2006).
    連結:
  30. [6-9] A. T. Ping, Q. Chen, J. W. Yang, M. Asif Khan, and I. Adesida ,” DC and Microwave Performance of High-Current AlGaN/GaN Heterostructure Field Effect Transistors Grown on p-Type SiC Substrates,” IEEE Electron Device Letters, VOL. 19, NO. 2, FEBRUARY 1998.
    連結:
  31. AlGaN/GaN High Electron Mobility Transistors,” Japanese Journal of Applied Physics
    連結:
  32. [6-11] Yuji Awano, Makoyo Kosugi, Kinjiro Kosemura, Takashi Mimura, and Masayuki ABE , “Short-Channel Effects in Subquarter-Micrometer-Gate HEMT’s: Simulation and Experiment,” IEEE Transaction on Electron Devices, VOL. 36, NO. 10, OCTOBER 1989.
    連結:
  33. [6-12]Madahusudan Singh, Yuh-Renn Wu, and Jasprit Singh,”Velocity Overshoot Effects and Scaling Issues in III-V Nitrides,” IEEE Transaction on Electron Devices, vol. 52, no. 3, March 2005.
    連結:
  34. [6-14] H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, “Improved device linearity of AlGaAs/InGaAs HFETs by a second mesa etching,” IEEE Electron Device Lett., vol. 23, no. 1, pp. 1-3, Jan. 2002.
    連結:
  35. [6-15] N. B. de Carvalho and J. C. Pedro, “Lager- and small-signal IMD behavior of microwave power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2364-2374, Dev. 1999.
    連結:
  36. Reference
  37. [1-1] Umesh K. Mishra, Linkun Shen, Thomas E. Kazior, and Yi-Feng Wu,“GaN-Based RF Power Devices and Amplifiers,” Proceedings of the IEEE 96, 2(2008).
  38. [1-5] T.Palacio, A. Chakrabotry, S. Rajan, C. Poblenz, S. Keller, S.P. DEnBaars, J.S. Speck, and U.K. Mishra,‘‘High-Power AlGaN/GaN HEMTs for Ka-Band Application,” IEEE Electron Device Letters 26, 11(2005).
  39. Chapter 2
  40. transistors from charge control analysis,” Applied Physics Letters Volume 75, Number 16, 18 October 1999.
  41. Chapter 3
  42. [3-2] Microwave Measurements Division • 490 Jarvis Drive • Morgan Hill, CA 95037-2809, “Intermodulation Distortion Measurements Using the 37300 Series Vector Network Analyzer Application Note/GIP-G”
  43. Chapter 4
  44. [4-2]Bruce M. Green, Student Member, IEEE, Kenneth K. Chu, E. Martin Chumbes, Student Member, IEEE, Joseph A. Smart, James R. Shealy, Member, IEEE, and Lester F. Eastman, Life Fellow, IEEE,” The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Letters, Vol. 21, No. 6, June 2000
  45. Chpater 5
  46. [5-1] Umesh K. Mishra, Linkun Shen, Thomas E. Kazior, and Yi-Feng Wu,“GaN-Based RF Power Devices and Amplifiers,” Proceedings of the IEEE 96, 2(2008).
  47. [5-5] T.Palacio, A. Chakrabotry, S. Rajan, C. Poblenz, S. Keller, S.P. DEnBaars, J.S. Speck, and U.K. Mishra,‘‘High-Power AlGaN/GaN HEMTs for Ka-Band Application,” IEEE Electron Device Letters 26, 11(2005).
  48. [5-8] Toshihide IDE_, Mitsuaki SHIMIZU, Akira NAKAJIMA, Masaki INADA, Shuichi YAGI, Guanxi PIAO,Yoshiki YANO1, Nakao AKUTSU1, Hajime OKUMURA, and Kazuo ARAI,’’ Gate-Length Dependence of DC Characteristics in Submicron-Gate AlGaN/GaN High Electron Mobility Transistors,” Japanese Journal of Applied Physics 46, 4B(2007).
  49. [5-10] Y. Ando, Y. Okamoto, K. Hataya, T. Nakayama, H. Miyamoto, T. Inoue,and M. Kuzuhara, “12 W/mm recessed-gate AlGaN–GaN heterojunction field-plate FET,” in IEDM Tech. Dig, 2003, pp. 563–566.
  50. [5-12] Chia-Ta Chang, Heng-Tung Hsu, Edward Yi Chang, Chien-I Kuo, Jui-Chien Huang, Chung-Yu Lu, and Yasuyuki Miyamoto, ‘‘30-GHz Low-Noise Performanceof 100-nm-Gate-Recessed,” IEEE Electron Device Letters 31, 2(2010).
  51. [6-4] Umesh K. Mishra, Linkun Shen, Thomas E. Kazior, and Yi-Feng Wu,“GaN-Based RF Power Devices and Amplifiers,” Proceedings of the IEEE 96, 2(2008).
  52. [6-7] T.Palacio, A. Chakrabotry, S. Rajan, C. Poblenz, S. Keller, S.P. DEnBaars, J.S. Speck, and U.K. Mishra,‘‘High-Power AlGaN/GaN HEMTs for Ka-Band Application,” IEEE Electron Device Letters 26, 11(2005).
  53. [6-10] Toshihide IDE, Mitsuaki Shimizy, Akira Nakajima, Masaki Inada, Shuichi YAGI, Guanxi Piao, Yoshiki Yano1, Nakao Akutsu1, Hajime Okumura, and Kazuo ARAI, “Gate-Length Dependence of DC Characteristics in Submicron-Gate
  54. Vol. 46, No. 4B, 2007, pp. 2334–2337.
  55. [6-13] Toshihiro Ohki, Toshihide Kikkawa, Yusuke Inoue, Masahito Kanamura, Naoya Okamoto,Kozo Makiyama, Kenji Imanishi, Hisao Shigematsu, Kazukiyo Joshin, and Naoki Hara ,“Reliability of GaN HEMTs: Current Status and Future Technology,” IEEE CFP09RPS-CDR 47th Annual International Reliability Physics Symposium, Montreal, 2009.