Title

以La(1-x)Sr(x)Mn(1-y)Co(y)O3波洛斯凱特型觸媒用於低溫SCR處理NOx之研究

Translated Titles

Low Temperature Selective Catalytic Reduction of NOx with NH3 using La(1-x)Sr(x)Mn(1-y)Co(y)O3 Perovskite Catalysts

DOI

10.6842/NCTU.2014.00174

Authors

賴理夏

Key Words

低溫選擇性觸媒還原 ; 波洛斯凱特型觸媒 ; 氮氧化物 ; 共沉澱法 ; 空氣汙染控制 ; low temperature SCR ; perovskite ; nitrogen oxides ; co-precipitation method ; flue gas treatment

PublicationName

交通大學環境工程系所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

白曛綾

Content Language

繁體中文

Chinese Abstract

選擇性觸媒還原法(Selective catalytic reduction,簡稱SCR)已經被長時間使用於固定汙染源中處理氮氧化物(NOx)。傳統上以MoO3/TiO2或V2O5/TiO2觸媒為主要的觸媒成分,然而其操作溫度過於狹窄(300-400℃),限制了SCR在高NOx濃度低溫度排放 工業的應用。波洛斯凱特(Perovskite)型觸媒具有成本低和在1000℃高溫下結構穩定的特色,可被視為在工業應用上具潛力的SCR觸媒。 本研究中探討波洛斯凱特型觸媒在低溫SCR反應中的活性。一般而言,波洛斯凱特觸媒結構的通式可以寫成ABO3,其在不改變材料結構的狀態下,利用部分置換A或B位置的金屬陽離子來增加反應活性和改變原本A或B位置陽離子的氧化態。本研究中以共沉澱法製備La(1-x)Sr¬(x)Mn(1-y)Co(y)O3 perovskite-type oxides,並分為四大群組ABO3、AA'BO3、ABB'O3和AA'BB'O3共13種觸媒。於200ppm NO, 200ppm NH3, 空間速度70000h-1下探討各觸媒在低溫系統之NO轉化率,其中以LaCo0.2Mn0.8O3觸媒在系統溫度150℃下之95%NO轉化率為最佳,當系統溫度到達350℃,NO轉化率衰退到65%以下,在高空間流速100,000h-1下,NO轉換率下降至不到65%。在物性方面,根據BET分析結果顯示,反應溫度150℃下觸媒之NO轉化率與比表面積成正比,XRD分析結果指出晶相越不顯著者,NO轉化率越高;化性方面,由TPD分析結果顯示,NO脫附量越多,NO轉換效率越高,TPR分析中顯示還原波峰越早出現者,NO轉換效率越高。

English Abstract

The selective catalytic reduction (SCR) has been applied for several decades to reduce NOx emissions with ammonia from stationary sources. The MoO3 or V2O5 supported on TiO2 are the most commonly employed SCR catalysts. However, it is limited to a narrow and relatively higher temperature window (300~400℃). This limits the application of SCR to many other industrial processes such as the steel manufacture industry which has high NOx emissions at relatively lower temperatures of around 150℃. Perovskite-type oxides, with the characteristics of low-cost materials and high structural stability even at above 1000℃, could be the potential candidate for industrial NO removal catalysts at low temperatures. In this study, the reactivity of perovskite-type mixed oxides for low temperature SCR of NO with NH3 is investigated. The general formula of perovskite oxide is ABO3, the B-site cations could also be substituted by another one without changing the material structure and the oxidation state of B cations could be modified. A series of La(1-x)Sr¬(x)Mn(1-y)Co(y)O3 perovskite-type oxide catalysts were prepared by the co-precipitation method and they were divided into four groups of ABO3, AA'BO3, ABB'O3 and AA'BB'O3. The SCR tests were carried out under the typical reaction condition of 200 ppm NO, 200 ppm NH3, 150℃ and GHSV of 70,000 h-1. The experimental results showed that the highest NO conversion of 95% was observed by using LaCo0.2Mn0.8CoO3 when the reaction temperature was 150℃. The NO conversion declined to below 65% at 350℃. And as GHSV was 100,000 h-1, the NO conversion decreased to 64%. The BET results revealed that the specific surface area was highly correlated to the NO conversion. The XRD results showed that poor crystallinity correlated to a higher NO conversion. The TPD results revealed that the amount of adsorbed NO played an important role in the SCR reaction at 150℃. As the NO desorption amount was larger, the catalyst activity was higher. The TPR results indicated that as the reduction peak appeared at a lower temperature the NO conversion was higher, which is due to the lower energy was being consumed.

Topic Category 工學院 > 環境工程系所
工程學 > 土木與建築工程
Reference
  1. 吳旻聰,「官能化中孔碳材負載鉑(Pt)金屬觸媒材料之製備、特性鑑定與燃料電池應用」,2008,碩士論文,國立臺灣師範大學化學研究所
    連結:
  2. 胡維民,「奈米級La1-xA´xMnO3(A´=Sr,Ce)觸媒用於一氧化氮還原反應之性能」,2002,碩士論文,國立成功大學化學工程研究所。
    連結:
  3. 陳碧玉,「氫氧化鐵(FeOOH)觸媒同步還原NO /氧化CO 之研究」,2007,碩士論文,國立台北科技大學環境規劃與管理研究所。
    連結:
  4. 黃煜翔,「木屑於渦旋式流體化床燃燒爐中氣態污染物排放之研究」,2006,碩士論文,中原大學化學工程研究所。
    連結:
  5. 黃國華,「以低溫SCR觸媒同時處理2-氯酚及NOx之研究」,2010,碩士論文,國立交通大學環境工程研究所。
    連結:
  6. 楊逸楨,「土壤無機相對有機污染物吸附特性之研究」,2007,碩士論文,國立中央大學環境工程研究所。
    連結:
  7. 游世元,「低溫SCR觸媒處理NO之效率與SO2毒化影響研究-擔體效應」,2011,碩士論文,國立交通大學環境工程研究所。
    連結:
  8. 劉思妤,「以奈米鈦管及二氧化鈦為擔體製備低溫SCR觸媒處理NOx之SO2毒化影響研究」,2012,碩士論文,國立交通大學化學工程研究所。
    連結:
  9. Bartholomew, C.H. (2001) Mechanisms of Catalyst Deactivation. Applied Catalysis a-General 212(1-2), 17-60.
    連結:
  10. Biniwale, R.B., Pande, J.V., Dhakad, M., Labhsetwar, N.K. and Ichikawa, M. (2008) Nitric Oxide Reduction Using Hydrogen over Perovskite Catalysts with Promotional Effect of Platinum on Catalytic Activity. Catalysis Letters 123(1-2), 164-171.
    連結:
  11. Chandra, N., Singh, D.K., Sharma, M., Upadhyay, R.K., Amritphale, S.S. and Sanghi, S.K. (2010) Synthesis and Characterization of Nano-Sized Zirconia Powder Synthesized by Single Emulsion-Assisted Direct Precipitation. Journal of Colloid and Interface Science 342(2), 327-332.
    連結:
  12. Chen, L.A., Li, J.H., Ge, M.F. and Zhu, R.H. (2010a) Enhanced Activity of Tungsten Modified CeO2/TiO2 for Selective Catalytic Reduction of NOx with Ammonia. Catalysis Today 153(3-4), 77-83.
    連結:
  13. Chen, Z.H., Yang, Q., Li, H., Li, X.H., Wang, L.F. and Tsang, S.C. (2010b) Cr-MnOx Mixed-Oxide Catalysts for Selective Catalytic Reduction of NOx with NH3 at Low Temperature. Journal of Catalysis 276(1), 56-65.
    連結:
  14. Chroneos, A., Vovk, R.V., Goulatis, I.L. and Goulatis, L.I. (2010) Oxygen Transport in Perovskite and Related Oxides: A Brief Review. Journal of Alloys and Compounds 494(1-2), 190-195.
    連結:
  15. Forzatti, P., Nova, I. and Tronconi, E. (2010) New "Enhanced NH3-SCR" Reaction for Nox Emission Control. Industrial & Engineering Chemistry Research 49(21), 10386-10391.
    連結:
  16. Giannakas, A.E., Ladavos, A.K. and Pomonis, P.J. (2004) Preparation, Characterization and Investigation of Catalytic Activity for NO Plus Co Reaction of LaMnO3 and LaFeO3 Perovskites Prepared Via Microemulsion Method. Applied Catalysis B-Environmental 49(3), 147-158.
    連結:
  17. Huang, J.H., Tong, Z.Q., Huang, Y. and Zhang, J.F. (2008) Selective Catalytic Reduction of NO with NH3 at Low Temperatures over Iron and Manganese Oxides Supported on Mesoporous Silica. Applied Catalysis B-Environmental 78(3-4), 309-314.
    連結:
  18. Huang, T.J. and Chen, C.M. (2011) Syngas Reactivity over (LaAg)(CoFe)O-3 and Ag-Added (LaSr)(CoFe)O-3 Anodes of Solid Oxide Fuel Cells. Journal of Power Sources 196(5), 2545-2550.
    連結:
  19. Jiang, B.Q., Liu, Y. and Wu, Z.B. (2009) Low-Temperature Selective Catalytic Reduction of No on MnOx/TiO2 Prepared by Different Methods. Journal of Hazardous Materials 162(2-3), 1249-1254.
    連結:
  20. Jin, R.B., Liu, Y., Wu, Z.B., Wang, H.Q. and Gu, T.T. (2010) Relationship between SO2 Poisoning Effects and Reaction Temperature for Selective Catalytic Reduction of NO over Mn-Ce/TiO2 Catalyst. Catalysis Today 153(3-4), 84-89.
    連結:
  21. Kim, C.H., Qi, G.S., Dahlberg, K. and Li, W. (2010) Strontium-Doped Perovskites Rival Platinum Catalysts for Treating Nox in Simulated Diesel Exhaust. Science 327(5973), 1624-1627.
    連結:
  22. Koponen, M.J., Suvanto, M., Pakkanen, T.A., Kallinen, K., Kinnunen, T.-J.J. and Härkönen, M. (2005) Synthetic Studies of (, Pr, Nd; , Mn; , Pt) Perovskites. Solid State Sciences 7(1), 7-12.
    連結:
  23. Koponen, M.J., Suvanto, M., Kallinen, K., Kinnunen, T.-J.J., Härkönen, M. and Pakkanen, T.A. (2006a) Structural Transformations in Cubic Structure of Mn/Co Perovskites in Reducing and Oxidizing Atmospheres. Solid State Sciences 8(5), 450-456.
    連結:
  24. Ladavos, A.K. and Pomonis, P.J. (1993) Structure and Catalytic Activity of Perovskites La-Ni-O Supported on Alumina and Zirconia. Applied Catalysis B-Environmental 2(1), 27-47.
    連結:
  25. Lentmaier, J., KemmlerSack, S., Knell, G., Kessler, P. and Plies, E. (1996) Selective Reduction of Nitrogen Monoxide by Catalysts Based on Composites between Solid Acid and Perovskite in the Presence of Excess Oxygen. Materials Research Bulletin 31(10), 1269-1276.
    連結:
  26. Li, C.-L. and Lin, Y.-C. (2011) Methanol Partial Oxidation over Palladium-, Platinum-, and Rhodium-Integrated LaMnO3 Perovskites. Applied Catalysis B: Environmental 107(3-4), 284-293.
    連結:
  27. Li, X., Zhang, H.B., Liu, X.X., Li, S.J. and Zhao, M.Y. (1994) XPS Study on O(1s) Acid Fe(2p) for Nanocrystalline Composite Oxide LaFeO3 with the Perovskite Structure. Materials Chemistry and Physics 38(4), 355-362.
    連結:
  28. Lin, C.H. and Bai, H. (2003) Surface Acidity over Vanadia/Titania Catalyst in the Selective Catalytic Reduction for No Removal - in Situ Drifts Study. Applied Catalysis B-Environmental 42(3), 279-287.
    連結:
  29. Liu, F.D., He, H., Zhang, C.B., Shan, W.P. and Shi, X.Y. (2011) Mechanism of the Selective Catalytic Reduction of NOx with NH3 over Environmental-Friendly Iron Titanate Catalyst. Catalysis Today 175(1), 18-25.
    連結:
  30. Liu, J., Zhao, Z., Xu, C.M. and Duan, A.J. (2008) Simultaneous Removal of Nox and Diesel Soot over Nanometer Ln-Na-Cu-O Perovskite-Like Complex Oxide Catalysts. Applied Catalysis B-Environmental 78(1-2), 61-72.
    連結:
  31. Liu, Z.M., Hao, J.M., Fu, L.X. and Zhu, T.L. (2003) Study of Ag/La-0.Ce-6(0).4CoO3 Catalysts for Direct Decomposition and Reduction of Nitrogen Oxides with Propene in the Presence of Oxygen. Applied Catalysis B-Environmental 44(4), 355-370.
    連結:
  32. Lopez-Suarez, F.E., Bueno-Lopez, A., Illan-Gomez, M.J., Adamski, A., Ura, B. and Trawczynski, J. (2008) Copper Catalysts for Soot Oxidation: Alumina Versus Perovskite Supports. Environmental Science & Technology 42(20), 7670-7675.
    連結:
  33. Maczka, M., Mendoza-Mendoza, E., Fuentes, A.F., Lemanski, K. and Deren, P. (2012) Low-Temperature Synthesis, Luminescence and Phonon Properties of Er and/or Dy Doped LaAlO3 Nanopowders. Journal of Solid State Chemistry 187, 249-257.
    連結:
  34. Miquel, P., Yamin, Y., Lombaert, K., Dujardin, C. and Granger, P. (2009) Thermal Ageing Induced Effects on Pd/LaFeO3 for Nox Reduction by Hydrocarbons: Influence of the Preparation Method. Topics in Catalysis 52(13-20), 1791-1798.
    連結:
  35. Muguerra, H., Rivas-Murias, B., Traianidis, M., Marchal, C., Vanderbemden, P., Vertruyen, B., Henrist, C. and Cloots, R. (2011) Thermoelectric Properties of N-Type Ca1-xDyxMn1-yNbyO3-σCompounds (X=0, 0.02, 0.1 and Y=0, 0.02) Prepared by Spray-Drying Method. Journal of Alloys and Compounds 509(29), 7710-7716.
    連結:
  36. Nagai, T., Ito, W. and Sakon, T. (2007) Relationship between Cation Substitution and Stability of Perovskite Structure in SrCoO3-σ-Based Mixed Conductors. Solid State Ionics 177(39-40), 3433-3444.
    連結:
  37. Pena, M.A. and Fierro, J.L.G. (2001) Chemical Structures and Performance of Perovskite Oxides. Chemical Reviews 101(7), 1981-2017.
    連結:
  38. Ponce, S., Pena, M.A. and Fierro, J.L.G. (2000) Surface Properties and Catalytic Performance in Methane Combustion of Sr-Substituted Lanthanum Manganites. Applied Catalysis B-Environmental 24(3-4), 193-205.
    連結:
  39. Qi, G.S. and Yang, R.T. (2003) Low-Temperature Selective Catalytic Reduction of NO with NH3 over Iron and Manganese Oxides Supported on Titania. Applied Catalysis B-Environmental 44(3), 217-225.
    連結:
  40. Ramesh, K., Chen, L.W., Chen, F.X., Liu, Y., Wang, Z. and Han, Y.F. (2008) Re-Investigating the Co Oxidation Mechanism over Unsupported MnO, Mn2O3 and MnO2 Catalysts. Catalysis Today 131(1-4), 477-482.
    連結:
  41. Screen, T. (2007) Platinum Group Metal Perovskite Catalysts. Platinum Metals Review 51(2), 87-92.
    連結:
  42. Stege, W.P., Cadus, L.E. and Barbero, B.P. (2011) La1-xCaxMnO3 Perovskites as Catalysts for Total Oxidation of Volatile Organic Compounds. Catalysis Today 172(1), 53-57.
    連結:
  43. Tanaka, H., Mizuno, N. and Misono, M. (2003) Catalytic Activity and Structural Stability of La0.9Ce0.1Co1-xFexO3 Perovskite Catalysts for Automotive Emissions Control. Applied Catalysis a-General 244(2), 371-382.
    連結:
  44. Teraoka, Y., Kakebayashi, H., Moriguchi, I. and Kagawa, S. (1991) Hydroxy Acid-Aided Synthesis of Perovskite-Type Oxides of Cobalt and Manganese. Chemistry Letters (4), 673-676.
    連結:
  45. Tien-Thao, N., Alamdari, H. and Kaliaguine, S. (2008) Characterization and Reactivity of Nanoscale La(Co,Cu)O3 Perovskite Catalyst Precursors for Co Hydrogenation. Journal of Solid State Chemistry 181(8), 2006-2019.
    連結:
  46. Tien-Thao, N., Zahedi-Niaki, M.H., Alamdari, H. and Kaliaguine, S. (2007) Conversion of Syngas to Higher Alcohols over Nanosized LaCo0.7Cu0.3O3 Perovskite Precursors. Applied Catalysis a-General 326(2), 152-163.
    連結:
  47. Topsoe, N.Y. (1991) Characterization of the Nature of Surface Sites on Vanadia Titania Catalysts by FTIR. Journal of Catalysis 128(2), 499-511.
    連結:
  48. Wallin, M., Cruise, N., Klement, U., Palmqvist, A. and Skoglundh, B. (2004) Preparation of Mn, Fe and Co Based Perovskite Catalysts Using Microemulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 238(1-3), 27-35.
    連結:
  49. Wallin, M., Forser, S., Thormahlen, P. and Skoglundh, M. (2004) Screening of TiO2-Supported Catalysts for Selective NOx Reduction with Ammonia. Industrial & Engineering Chemistry Research 43(24), 7723-7731.
    連結:
  50. Wang, J., Su, Y.G., Wang, X.Q., Chen, J.H., Zhao, Z. and Shen, M.Q. (2012) The Effect of Partial Substitution of Co in LaMnO3 Synthesized by Sol-Gel Methods for NO Oxidation. Catalysis Communications 25, 106-109.
    連結:
  51. Wu, Z.B., Jiang, B.Q., Liu, Y., Zhao, W.R. and Guan, B.H. (2007) Experimental Study on a Low-Temperature SCRCatalyst Based on MnOx/TiO2 Prepared by Sol-Gel Method. Journal of Hazardous Materials 145(3), 488-494.
    連結:
  52. Yu, H.C. and Fung, K.Z. (2004) Role of Sr Addition on the Structure Stability and Electrical Conductivity of Sr-Doped Lanthanum Copper Oxide Perovskites. Journal of Materials Research 19(3), 943-949.
    連結:
  53. Zhang, C., Wang, C., Zhan, W., Guo, Y., Guo, Y., Lu, G., Baylet, A. and Giroir-Fendler, A. (2013a) Catalytic Oxidation of Vinyl Chloride Emission over Lamno3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) Catalysts. Applied Catalysis B: Environmental 129, 509-516.
    連結:
  54. Zhang, R., Villanueva, A., Alamdari, H. and Kaliaguine, S. (2006a) Scr of No by Propene over Nanoscale LaMn1−xCuxO3 Perovskites. Applied Catalysis A: General 307(1), 85-97.
    連結:
  55. Zhang, R., Villanueva, A., Alamdari, H. and Kaliaguine, S. (2006b) Cu- and Pd-Substituted Nanoscale Fe-Based Perovskites for Selective Catalytic Reduction of No by Propene. Journal of Catalysis 237(2), 368-380.
    連結:
  56. Zhang, R., Luo, N., Yang, W., Liu, N. and Chen, B. (2013b) Low-Temperature Selective Catalytic Reduction of NO with NH3Using Perovskite-Type Oxides as the Novel Catalysts. Journal of Molecular Catalysis A: Chemical 371, 86-93.
    連結:
  57. Zhang, R.D., Luo, N., Yang, W., Liu, N. and Chen, B.H. (2013c) Low-Temperature Selective Catalytic Reduction of NO with NH3 Using Perovskite-Type Oxides as the Novel Catalysts. Journal of Molecular Catalysis a-Chemical 371, 86-93.
    連結:
  58. Zhao, H., Xu, Y.N. and Liu, J.Q. (2011) Selective Catalytic Reduction of Nitric Oxide with Fe-Mn-Ce Metal Oxide-Based Catalysts. Multi-Functional Materials and Structures Engineering, Icmmse 2011 304, 31-35.
    連結:
  59. Zhao, Z., Yang, X.G. and Wu, Y. (1996) Comparative Study of Nickel-Based Perovskite-Like Mixed Oxide Catalysts for Direct Decomposition of No. Applied Catalysis B-Environmental 8(3), 281-297.
    連結:
  60. Zhu, J. and Thomas, A. (2009) Perovskite-Type Mixed Oxides as Catalytic Material for NO Removal. Applied Catalysis B-Environmental 92(3-4), 225-233.
    連結:
  61. Zhu, J., Yang, X., Xu, X. and Wei, K. (2007) Effect of Strontium Substitution on the Activity of La2-XSrxNiO4 (X=0.0-1.2) in NO Decomposition. Science in China Series B-Chemistry 50(1), 41-46.
    連結:
  62. Zhu, J., Gao, F., Dong, L.H., Yu, W.J., Qi, L., Wang, Z., Dong, L. and Chen, Y. (2010) Studies on Surface Structure of MxOy/MoO3/CeO2 System (M = Ni, Cu, Fe) and Its Influence on SCR of NO by NH3. Applied Catalysis B-Environmental 95(1-2), 144-152.
    連結:
  63. Zhu, J.J., Xiao, D.H., Li, J., Yang, X.G. and Wu, Y. (2005) Effect of Ce on No Direct Decomposition in the Absence/Presence of O-2 over La1-xCexSrNiO4 (0 <= x <= 0.3). Journal of Molecular Catalysis a-Chemical 234(1-2), 99-105.
    連結:
  64. 中華民國行政院環保署,空氣品質管理,http://www.epa.gov.tw/
  65. 林瑞雄,「八十八年度空污費計畫期末報告-不同空氣污染地區之人體肺功能及血液形態」,1999,頁9
  66. 徐聖揚,「中孔洞分子篩SBA-15之表面修飾」,2008,碩士論文,國立台灣科技大學化學工程研究所。
  67. 陳維新、江金龍,「空氣污染與控制」,高立圖書有限公司,2004,第8 版,頁 8-10-8-25。
  68. 羅聖全,「電子顯微鏡介紹– TEM」,小奈米大世界期刊,2014
  69. 科技部,「政府科技發展產業科技策略規劃報告(草案)(材料化工分組)」,2004, 頁33
  70. Bosch, H., and Janssen, F. (1988) “DeNOx Catalyst Review”Catalyst Today, vol. 2, pp. 369-532.
  71. Johnsson, M. and Lemmens, P. (2006) Crystallography and Chemistry of Perovskites, Handbook of Magnetism and Advanced Magnetic Materials.
  72. Lin, H.K., Wang, C.B., Chiu, H.C. and Chien, S.H. (2003) In Situ Ftir Study of Cobalt Oxides for the Oxidation of Carbon Monoxide. Catalysis Letters 86(1-3), 63-68.
  73. Lisi, L., Bagnasco, G., Ciambelli, P., De Rossi, S., Porta, P., Russo, G. and Turco, M. (1999) Perovskite-Type Oxides - Ii. Redox Properties of LaMn1-XCuxO3 and LaCo1-XCuxO3 and Methane Catalytic Combustion. Journal of Solid State Chemistry 146(1), 176-183.
  74. Tietz, F., Raj, I.A., Fu, Q.X. and Zahid, M. (2009) Investigation of the Quasi-Ternary System LaMnO3-LaCoO3-"LaCuO3". Ii: The Series Lamn0.25-X Co0.75-X Cu-2x O3-Delta and LaMn0.75-xCo0.25-x Cu2x O3-σ. Journal of Materials Science 44(18), 4883-4891.