Title

成長後退火對有機薄膜電晶體之電性影響探討

Translated Titles

Post-Annealing Effect on the Performance of Organic Thin-Film Transistors

DOI

10.6842/NCTU.2012.00921

Authors

趙守敬

Key Words

成長後退火 ; HASH(0x19d7f7c0) ; 載子遷移率 ; Post-annealing ; HASH(0x19d7f9a0) ; mobility

PublicationName

交通大學光電工程系所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

陳方中;HASH(0x19d78430);田仲豪

Content Language

繁體中文

Chinese Abstract

本研究利用四駢環類的材料為有機主動層材料、聚乙烯醇肉桂酸酯為有機介電層材料,以金為電極製做出頂電極結構之有機薄膜電晶體,我們發現經由成長後退火處理可以提高元件之載子遷移率表現,進而去研究載子遷移率上升的原因,我們發現成長後退火會改變主動層的結晶型態、表面形態以及降低了利用轉換線法所萃取之接觸電阻。本實驗最佳化條件其電流關關比可至3.8x103,載子遷移率可達0.092 cm2/Vs。

English Abstract

In this study, we fabricated top contact organic thin film transistors with poly(2,5-bis(thiophene-2-yl)-(3,7-ditri-decanyltetrathienoacene) as active layer. The dielectric layer and source/drain electrodes were fabricated with poly(vinyl cinnamate)(PVCN) and Au, respectively. We found that the device performance were improved apparently after post-annealing. We realized that post-annealing could change the polymer morphology and improve the crystallization of the active layer. The contact resistances, which were extracted following the transfer-line method, were reduced after post-annealing. The optimized device exhibited a mobility of 0.092 cm2/Vs and an on-off ratio of 3.8x103.

Topic Category 電機學院 > 光電工程系所
工程學 > 電機工程
Reference
  1. [5] G. Horowitz, J. Mat. Res. 19 (2004).
    連結:
  2. [7] Hagen Klauk, Organic thin-film transistors, Chemical Society Reviews, Received 21st October 2009
    連結:
  3. [12] A. Assadi, C. Svensson, M. Willander, and O. Inganas, “Field-Effect Mobility of Poly(3-hexylthiophene)”, Appl. Phys. Lett. 53, pp.195, 1988.
    連結:
  4. [16] J. Appl. Phys. 80, 2501 (1996); doi: 10.1063/1.363032
    連結:
  5. [17] Appl. Phys. Lett. 71, 3871 (1997); doi: 10.1063/1.120529
    連結:
  6. [20] Chang Hyun Lee, Kyung In Choi, Myoung Kwan Cho, Yun Heub Song,
    連結:
  7. Kyu Cham Park, and Kinam Kim, 2003 IEEE
    連結:
  8. [23] O. D. Jurchescu, J. Baas, T. T. M. Palstra, Appl. Phys. Lett. 84, 3061(2004).
    連結:
  9. [24] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
    連結:
  10. [26] Iain McCulloch, Martin Heeney, Clare Bailey, Kristijonas Genevicius, Iain MacDonald, Maxim Shkunov, David Sparrowe, Steve Tierney, Robert Wagner, Weimin Zhang, Michael L. Chabinyc, R. Joseph Kline, Michael D. McGehee, and Michael F. Toney, Nat. Mater 5, 328 (2006).
    連結:
  11. [37] Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
    連結:
  12. [42] Tsuyoshi Sekitani, Yusaku Kato, Shingo Iba, Hiroshi Shinaoka, and Takao Someya, Appl. Phys. Lett. 86, 073511 (2005)
    連結:
  13. [43] G. Guillaud, M. Al Sadound, M. Maitrot, Chem. Phys. Lett., 167, 503 (1990).
    連結:
  14. [44] Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc., 120, 207 (1998).
    連結:
  15. [45] H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett., 63, 1372 (1993).
    連結:
  16. [52] Study of Carrier Mobility in Organic Thin Film Transistor(OTFT) with Different Manufacturing Conditions
    連結:
  17. [55] Morrison and Boyd, Organic Chemistry, sixth ed. (1992).
    連結:
  18. [56] G. Horowitz, “Organic Field-Effect Transistors”, Adv. Mater. 10, pp. 365, 1998.
    連結:
  19. [57] Charge transport in disorderedorganic field-effect transistors, Eduard Meijer
    連結:
  20. [58] Hon Hang Fong , Vladimir A. Pozdin , Aram Amassian , George G. Malliaras , Detlef-M. Smilgies , Mingqian He , Susan Gasper , Feixia Zhang and Michael Sorensen , J. Am. Chem. Soc., 2008, 130 (40), pp 13202–13203
    連結:
  21. [62] Yuning Li, Prashant Sonar, Samarendra P. Singh, Mui Siang Soh,Martin van Meurs, and Jozel Tan,J. Am. Chem. Soc. 2011, 133, 2198–2204
    連結:
  22. [1] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, IEEE T. Electron Dev. 52, 1519 (2005).
  23. [2] L. Zhou, S. Park, B. Bai, J. Sun, S. C. Wu, T. N. Jackson, S. Nelson, D. Freeman, and Y. Hong, IEEE Electron Dev. Lett. 26, 640 (2005).
  24. [3] Yugeng Wen, Yunqi Liu, Yunlong Guo, Gui Yu, and Wenping Hu, Chem. Rev., 2011, 111 (5), pp 3358–3406
  25. [4] T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H.-H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 284 (2003).
  26. [6] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater 11 (2001).
  27. First published as an Advance Article on the web 16th April 2010
  28. [8] Liu, Ping, "MATERIAL DESIGN AND INTERFACIAL ENGINEERING FOR HIGH-PERFORMANCE ORGANIC THIN FILM
  29. TRANSISTORS" (2012).
  30. [9] organic field effect trnasistors theory, fabrication and characterization
  31. [10] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, and A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, PHYSICAL REVIEW I,ETTERS,VOLUME 39, NUMBER 17, 24 OCTQBER 1977
  32. [11] F. Ebisawa, T. Kurokawa, and S. Nara, J. Appl. Phys. 54, 3255 (1983).
  33. [13] Gilles Horowitz," Bernard Bachet, Abderrahim Yassar, Philippe Lang,
  34. Frkdkric Demanze, Jean-Louis Fave,* and Francis Garnier, Chem. Mater. 1996, 7, 1337-1341
  35. [14] G. Horowitz, X. Z. Peng, D. Fichou, and F. Garnier, Syn. Met. 51, 419 (1992).
  36. [15] A. R. Brown,A. Pomp, D. M. de Leeuw, D. B. M. Klaassen, and E. E. Havinga P. Herwig and K. Mu llen, J. Appl. Phys. 79 (4), 15 February 1996
  37. [18] C. K. Chiang, C. B. Fincher, Jr., Y. W. Park, and A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and Alan G. MacDiarmid, PHYSICAL REVIEW I,ETTERS,VOLUME 39, NUMBER 17, 24 OCTQBER 1977
  38. [19] Carmen Bartic , Henri Jansen , Andrew Campitelli , Staf Borghs, Organic Electronics 3 (2002) 65–72
  39. [21] WANG Wei, SHI Jia-Wei, LIANG Chang, ZHANG Hong-Mei,LIU Ming-Da,QUAN Bao-Fu, GUO Shu-Xu,FANG Jun-Feng, MA Dong-Ge, 2005 Chinese Phys. Lett. 22 496
  40. [22] M. P. Hong, B. S. Kim, Y. U. Lee, K. K. Song, J. H. Oh, J. H. Kim, T. Y. Choi, M. S. Ryu, and K. Chung, S. Y. Lee, B. W. Koo, J. H. Shin, E. J. Jeong, and L. S. Pu, “Recent Process in Large Sized & High Performance Organic TFT Array”, SID 05 DIGEST, 23, 2005.
  41. [25] B.S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc. 126, 3378 (2004).
  42. [27] M. P. Hong, B. S. Kim, Y. U. Lee, K. K. Song, J. H. Oh, J. H. Kim, T. Y. Choi, M. S. Ryu, K. Chung, S.Y. Lee, B. W. Koo, J. H. Shin, E. J. Jeong, and L. S. Pu, SID International Symposium (2005).
  43. [28] M. M. Payne, S. R. Parkin, J. E. Anthony, C.-C. Kuo, and T. N. Jackson, J. Am. Chem. Soc. 127, 4986 (2005).
  44. [29] Oana D. Jurchescu, Jacob Baas, and Thomas T. M. Palstra, Appl. Phys. Lett. 84, 16 (2004).
  45. [30] Etienne Menard, Vitaly Podzorov, seung-Hyun Hur, Anshu Gaur, Michael E. Gershenson, and John A. Rogers, Adv. Mater 16, 2097 (2004).
  46. [31] Patrick R. L. Malenfant, Christos D. Dimitrakopoulos, Jeffrey D. Gelorme, Laura L. Kosbar, Teresita O. Graham, Alessandro Curioni, and Wanda Andreoni, Appl. Phys. Lett. 80, 2517 (2004).
  47. [32] Joon Hak Oh, Shuhong Liu, Zhenan Bao, Rdiger Schmidt, and Frank Wrthner, Appl. Phys. Lett. 91, 212107 (2007).
  48. [33] Tzng-Fang Guo, Zen-Jay Tsai, Shi-Tu Chen, Ten-Chin Wen, and Chia-tin Chung, J. Appl. Phys. 101, 124505 (2007).
  49. [34] Junhyuk Jang, Ji Whan Kim, Nohhwal Park, and Jang-Joo Kim, Organic Electronics 9, 481-486 (2008).
  50. [35] P. C. Kuo, A. Jamshidi-Roudbari, and Mitiadis Hatalis, J. Appl. Phys. 106, 114502 (2009)
  51. [36] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York (1989).
  52. [38] F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 54, 3255 (1983).
  53. [39] J. H. Burroughes, C. A. Jones, R. H. Friend, Nature, 335, 137 (1988).
  54. [40] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389 (1997).
  55. [41] J. H. Schn, C. Kloc, B. Batlogg, Org. Electron. 1, 57 (2000).
  56. [46] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, Synth. Met., 66, 257 (1994).
  57. [47] Y. Li, Y. Wu, B. S. Ong, J. Am. Chem. Soc. 127, [2005] 3266-3267.
  58. [48] I. Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M.
  59. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc,
  60. R. J. Kline, M. D. Mcgehee, M. F. Toney, Nature Materials, 5 [2006] 328-
  61. 333.
  62. [49] D. A. Neamen, “Semiconductor Physics and Devices :Basic Principles”, 3rd, McGraw-Hill, chapter 11 (2003).
  63. [50] http://www.ndl.org.tw/web/publication/nano_communcation/article02.pdf
  64. [51] P. V. Necliudov et al. Solid-State Electronics, 47, 259 (2003).
  65. C.M.Su* T.H.Meen** Department of Electrical Engineering Southern Taiwan University of Technology,Tainan,Taiwan 710, R.O.C
  66. [53] Zhuoying Chen,Mi Jung Lee,Raja Shahid Ashraf,Yun Gu,Sebastian Albert-Seifried, Martin Meedom Nielsen,Bob Schroeder,Thomas D. Anthopoulos,Martin Heeney,Iain McCulloch,Henning Sirringhaus ,Adv. Mater.2012,24,647-652
  67. [54] D. A. Neamen, “Semiconductor Physics and Devices :Basic Principles”, 3rd, McGraw-Hill, chapter 11 (2003).
  68. [59] http://nanocenter.nchu.edu.tw/afm.
  69. [60] Photo from Nanotechology Now,
  70. http://www.nanotech-now.com/Art_Gallery/antonio-siber.htm
  71. [61] J. Jang, S. H. Kim, S. Nam, D. S. Chung, C. Yang, W. M. Yun, C. E. Park, and J. B. Koo, Appl. Phys. Lett. 90, 143306 (2008).