Title

金屬有機氣相沉積成長技術在氮化鎵基高電子遷移電晶體之應用

Translated Titles

MOCVD Growth Technologies for GaN-based High Electron Mobility Transistors

DOI

10.6842/NCTU.2015.00326

Authors

呂憲中

Key Words

金屬有機氣相沉積(MOCVD) ; GaN ; 高電子遷移率電晶體(HEMTs) ; 磊晶成長 ; AlGaN ; MOCVD ; GaN ; HEMTs ; Epitaxial Growth ; AlGaN

PublicationName

交通大學材料科學與工程系所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

博士

Advisor

張立

Content Language

英文

Chinese Abstract

近年來三族氮化物之高電子遷移率電晶體 (High Electron Mobility Transistors, HEMTs),其高頻、高功率之應用潛力已被成功地驗證。 當三族氮化物 HEMTs 被應用於商業市場時,雖然已經過多年,但是仍然有許多的研究投注在效率與可靠度之改善上。本研究之目標即是開發氮化鎵 (GaN) HEMT所需之金屬有機氣相沉積(Metal Organic Chemical Vapor Deposition, MOCVD)成長技術,並藉由調變能障層之應力及消除於GaN緩衝層內之非刻意摻雜,以提升GaN元件之實用效能。 本研究首先在兩英吋的藍寶石單晶基板上成長AlGaN/GaN HEMTs 之結構,這是因為此基板成本較低廉,並且可獲得高品質磊晶結構。在此基板成長之AlGaN/GaN HEMT,因殘餘氧之故導致有高漏電流之特性。為消除高漏電流只有抑制此氧雜質問題才能解決。因此,為開發出高崩潰電壓之AlGaN/GaN HEMTs,必須能同時抑制自藍寶石基板之氧擴散,或者是去除由前驅物殘存之氧雜質,才能得到。 為提升HEMT元件之性能,首先必須要成長出高結晶品質之AlGaN 能障層,並且進行應力調變,方可達成可靠的性能改善。這些優化之成長參數,特別是氣壓值與三/五比,在成長高品質AlGaN時,對於相分離的抑制以及Al組成的非均質現象而言,非常重要。在AlGaN/GaN異質結構中之殘留應力,則來自於晶格常數之不匹配度,是可以藉由改變高溫成長於AlGaN與GaN之AlN中間層 (interlayer) 厚度,而獲得改善。另外,Al摻入AlGaN的量以及結晶品質,亦會受AlN中間層引發之應力影響。因此,使用優化之條件成長AlGaN/GaN HEMTs於2吋藍寶石基板上,將可獲得具有優良電性與均勻性之磊晶片。 此外,本研究展示以MOCVD 進行其結構、能障層應力以及非刻意之碳摻雜等工程調變方式,提升AlGaN/GaN HEMTs 其電器性能之成果。所提出之HEMT前瞻結構,即以高溫-低溫-高溫交錯方式成長AlN緩衝層,再配合高溫AlN中間層,則可將HEMT的崩潰電壓推升至200V以上。此結構設計主要是藉由插入高溫AlN中間層位於傳統HEMT結構中,可降低AlGaN能障層之拉應力而明顯改善表面平整度。進而大幅提升46%二維電子氣(2 Dimensional Electron Gas, 2DEG)之電子遷移率,達到 1900 cm2/Vs 。同時,此以高溫-低溫-高溫交錯方式成長之AlN,取代了傳統結構中之高溫緩衝層,則可增進氮化鎵之結晶品質,明顯提升HEMTs之性能。此前瞻之HEMTs結構,在製作出元件後,其直流 (DC) 特性大幅提升, 與傳統以AlN緩衝層結構相較,其洩極 (Drain) 最大電流增加率達35.5% (~ 680A/mm);電導 (transconductance) 則有 15% (114 mS/mm)增加率。此插入高溫AlN中間層之方式,確實可降低AlGaN能障層之拉應力,因此對於AlGaN/GaN HEMTs 可靠度之提升而言,深具潛力。 除了在藍寶石基板上成長氮化鎵HEMT之研究外,高頻應用之AlGaN/GaN HEMT 結構,亦於兩吋(及三吋)半絕緣 (Semi-insulating, SI) 碳化矽基板以及高阻值(High resistivity, HR) 4吋矽晶片上成功開發。於碳化矽基板成長之AlGaN/GaN HEMT, 其特性已符合高頻、高功率之X波段(8-12 GHz) 軍用雷達應用需求。為降低成本,亦成功於高阻值的四吋矽晶片上開發高性能AlGaN/GaN HEMT,其通道電子密度與電子遷率移分別高達 0.8 x1013/cm2 及1560 cm2/Vs。同時此結構之微波損耗特性在40GHz頻率下低於-1.1 dB/mm適合於高頻應用。

English Abstract

In recent years High Electron Mobility Transistors (HEMTs) based on the nitride material system have successfully proven their potential as high-power and high frequency devices. While nitride-based HEMTs have been available in the commercial market for a few years, more study for improvements in efficiency and reliability is still object of present research. The objective of this work is to develop MOCVD growth technologies for GaN-based HEMTs and to improve performances of AlGaN/GaN HEMTs by modifying strain in barrier and by unintentionally doping in GaN buffer. AlGaN/GaN HEMTs structure are firstly grown on 2-inch c-plane sapphire substrate, which is relatively cheap and available with high quality. AlGaN/GaN HEMT grown on sapphire substrate shows high leakage current, which causes by residual oxygen. The low leakage current of AlGaN/GaN HEMTs grown on sapphire only can be achieved by eliminating both the diffusion of oxygen from sapphire substrate and n-type buffer layer due to oxygen impurities originating from MOCVD sources. To improve performances of HEMT devices, a good crystallinity AlGaN barrier is essentially required and strain-modified barrier may result in an improvement in reliability. The optimization of growth parameters, especially pressure and III/V ration, is very important to suppress phase separation including an inhomogeneous Al-composition and to achieve high crystal quality of AlGaN film. The residual strain in AlGaN layer grown on GaN induced by lattice mismatch can be modulated by varying thickness of a high temperature (HT) AlN interlayer (IL) inserted between AlGaN and GaN layers. Moreover, the AlGaN crystal quality and Al incorporation are influenced by strain induced by the HT AlN interlayer. Using optimum growth conditions, an AlGaN/GaN HEMTs structure grown on 2-inch sapphire substrate introduces good electrical characteristics and uniformity. Additionally, improvements in electrical characteristics of AlGaN/GaN HEMTs grown using MOCVD by engineering structure, barrier strain, and unintentional carbon incorporation are demonstrated. An advanced HEMT structure with a high-low-high (HLH) temperature AlN buffer and a HT AlN interlayer (IL) presents a breakdown voltage higher than 200 V. The HT AlN IL inserted in the middle of the conventional HEMTs structure introduces a reduction in the tension of AlGaN barrier, which results in an improvement on surface morphology. As a consequence, the 2DEG mobility increases remarkably by 46% (1900 cm2/Vs). The HLH AlN buffer substituting for the HT AlN buffer leads to the enhancement of GaN crystalline quality, which contributes to the performance improvement for HEMTs. The advanced HEMT using both an AlN IL and a HLH AlN buffer produces increases in the DC maximum drain current by 35.5% (~ 680A/mm) and in the transconductance by 15% (114 mS/mm) in comparison with the normal HEMT with an AlN buffer. Indeed, the reduction of AlGaN barrier tensile strain by inserting the HT AlN IL is promising for an improvement in AlGaN/GaN HEMTs reliability. Following the study of growth of GaN-based HEMTs on sapphire, AlGaN/GaN HEMT structures for high-frequencies application are successfully developed on 2-inch ( and 3-inch) semi-insulating (SI) 4H-SiC and HR 4-inch silicon substrates. The AlGaN/GaN HEMT structure on SI SiC results meet requirements for high-frequency and high-power applications in use of military radars which operate in particular frequency X-band (8-12 GHz). Looking to lower costs, AlGaN/GaN device on high-resistivity 4-inch (111) Si substrate has also been developed, exhibiting channel electron sheet densities of 0.8 x1013/cm2 and mobility of 1560 cm2/Vs. The designed structure is suitable for high-frequency application, which have been documented by RF loss less than -1.1 dB/mm at 40GHz.

Topic Category 工學院 > 材料科學與工程系所
工程學 > 工程學總論
Reference
  1. [2] "Global Gallium Nitride (GaN) Power Semiconductors Market worth $1.75 Billion by 2022", Available from: http://www.marketsandmarkets.com/PressReleases/gallium-nitride-semiconductor.asp, 2014.
    連結:
  2. [4] U. K. Mishra, P. Parikh, and W. Yi-Feng, "AlGaN/GaN HEMTs-an overview of device operation and applications", Proceedings of the IEEE, vol. 90, pp. 1022-1031, 2002.
    連結:
  3. [6] Y. Wu, et al. "Measured microwave power performance of AlGaN/GaN MODFET", Electron Device Letters, IEEE, vol. 17, pp. 455-457, 1996.
    連結:
  4. [7] M. A. Khan, et al. "Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias," Electronics Letters, vol. 30, pp. 2175-2176, 1994.
    連結:
  5. [8] E. T. Yu, III-V Nitride Semiconductors: Applications and Devices, Taylor & Francis, 2002.
    連結:
  6. [9] K. Donghyun, et al. "Recessed 70-nm Gate-Length AlGaN/GaN HEMTs Fabricated Using an Al2O3/SiNx Dielectric Layer", Electron Device Letters, IEEE, vol. 30, pp. 913-915, 2009.
    連結:
  7. [10] J. W. Chung, K. Tae-Woo, and T. Palacios, "Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs", Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 30.2.1-30.2.4. 2010
    連結:
  8. [11] S. Vitanov, et al. "High-temperature modeling of AlGaN/GaN HEMTs", Solid-State Electronics, vol. 54, pp. 1105-1112, 2010.
    連結:
  9. [12] C. Poblenz, A. L. Corrion, F. Recht, S. Chang Soo, C. Rongming, L. Shen, et al., "Power Performance of AlGaN/GaN HEMTs Grown on SiC by Ammonia-MBE at 4 and 10 GHz", Electron Device Letters, IEEE, vol. 28, pp. 945-947, 2007.
    連結:
  10. [14] J. J. Xu, S. Keller, G. Parish, S. Heikman, U. K. Mishra, and R. A. York, "A 3-10-GHz GaN-based flip-chip integrated broad-band power amplifier", Microwave Theory and Techniques, IEEE Transactions on, vol. 48, pp. 2573-2578, 2000.
    連結:
  11. [15] S. Jie, H. Fatima, A. Koudymov, A. Chitnis, X. Hu, H. M. Wang, et al., "Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill", Electron Device Letters, IEEE, vol. 24, pp. 375-377, 2003.
    連結:
  12. [16] J. Das, H. Oprins, H. Ji, A. Sarua, W. Ruythooren, J. Derluyn, et al., "Improved Thermal Performance of AlGaN/GaN HEMTs by an Optimized Flip-Chip Design", Electron Devices, IEEE Transactions on, vol. 53, pp. 2696-2702, 2006.
    連結:
  13. [17] D. Marcon, G. Meneghesso, W. Tian-Li, S. Stoffels, M. Meneghini, E. Zanoni, et al., "Reliability Analysis of Permanent Degradations on AlGaN/GaN HEMTs", Electron Devices, IEEE Transactions on, vol. 60, pp. 3132-3141, 2013.
    連結:
  14. [18] C. Lee, L. Witkowski, H. Q. Tserng, P. Saunier, R. Birkhahn, D. Olson, et al., "Effects of AlGaN/GaN HEMT structure on RF reliability", Electronics Letters, vol. 41, pp. 155-157, 2005.
    連結:
  15. [20] P. Valizadeh and D. Pavlidis, "Investigation of the impact of Al mole-fraction on the consequences of RF stress on AlxGa(1-x)N/GaN MODFETs", Electron Devices, IEEE Transactions on, vol. 52, pp. 1933-1939, 2005.
    連結:
  16. [21] J. I. Pankove, "GaN: from fundamentals to applications", Materials Science and Engineering: B, vol. 61–62, pp. 305-309, 7/30/ 1999.
    連結:
  17. [22] O. Ambacher, "Growth and applications of Group III-nitrides", Journal of Physics D: Applied Physics, vol. 31, p. 2653, 1998.
    連結:
  18. [23] S. Nakamura, "Blue light emitting laser diodes", Thin Solid Films, vol. 343–344, pp. 345-349, 1999.
    連結:
  19. [24] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III–V compound semiconductors and their alloys", Journal of Applied Physics, vol. 89, pp. 5815-5875, 2001.
    連結:
  20. [25] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors", Journal of Applied Physics, vol. 94, pp. 3675-3696, 2003.
    連結:
  21. [30] W. C. Johnson, J. B. Parson, and M. C. Crew, "Nitrogen Compounds of Gallium. III", The Journal of Physical Chemistry, vol. 36, pp. 2651-2654, 1931/01/01 1931.
    連結:
  22. [31] A. Isamu and A. Hiroshi, "Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters", Japanese Journal of Applied Physics, vol. 36, p. 5393, 1997.
    連結:
  23. [32] M. Levinshtein, Handbook Series on Semiconductor Parameters, World Scientific, 1997.
    連結:
  24. [34] A. Hiroshi, K. Masahiro, H. Kazumasa, and A. Isamu, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)", Japanese Journal of Applied Physics, vol. 28, p. L2112, 1989.
    連結:
  25. [35] H. Morkoç, R. Cingolani, and B. Gil, "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors", Solid-State Electronics, vol. 43, pp. 1909-1927, 1999.
    連結:
  26. [36] G. Namkoong, P. Boland, S.-Y. Bae, J.-P. Shim, D.-S. Lee, S.-R. Jeon, et al., "Effect of III-nitride polarization on VOC in p–i–n and MQW solar cells", Physica status solidi (RRL) – Rapid Research Letters, vol. 5, pp. 86-88, 2011.
    連結:
  27. [37] O. Ambacher, R. Dimitrov, M. Stutzmann, B. E. Foutz, M. J. Murphy, J. A. Smart, et al., "Role of Spontaneous and Piezoelectric Polarization Induced Effects in Group-III Nitride Based Heterostructures and Devices", Physica status solidi (B), vol. 216, pp. 381-389, 1999.
    連結:
  28. [38] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures", Journal of Vacuum Science & Technology B, vol. 17, pp. 1742-1749, 1999.
    連結:
  29. [39] H. Siegle, A. Kaschner, A. Hoffmann, I. Broser, C. Thomsen, S. Einfeldt, et al., "Raman scattering from defects in GaN: The question of vibrational or electronic scattering mechanism", Physical Review B, vol. 58, pp. 13619-13626, 1998.
    連結:
  30. [40] T. Luong Tien, K. L. Lin, E. Y. Chang, W. C. Huang, Y. L. Hsiao, and C. H. Chiang, "Photoluminescence and Raman studies of GaN films grown by MOCVD", Journal of Physics: Conference Series, vol. 187, p. 012021, 2009.
    連結:
  31. [41] S. H. Margueron, P. Bourson, S. Gautier, A. Soltani, D. Troadec, J.-C. De Jaeger, et al., "Residual stress relaxation in GaN/sapphire circular pillars measured by Raman scattering spectroscopy", Journal of Crystal Growth, vol. 310, pp. 5321-5326, 12/1/ 2008.
    連結:
  32. [42] S. Tripathy, S. J. Chua, P. Chen, and Z. L. Miao, "Micro-Raman investigation of strain in GaN and AlxGa1−xN/GaN heterostructures grown on Si(111)", Journal of Applied Physics, vol. 92, pp. 3503-3510, 2002.
    連結:
  33. [44] S. Porowski and C. Skierbiszewski, "Potential of MBE for gallium nitride based lasers," 2005, pp. 59580Z-59580Z-11.
    連結:
  34. [45] M. A. Fortes, "Coincidence Site Lattices", Physica status solidi (b), vol. 54, pp. 311-319, 1972.
    連結:
  35. [46] F. A. Marino, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick, and M. Saraniti, "Effects of Threading Dislocations on AlGaN/GaN High-Electron Mobility Transistors", Electron Devices, IEEE Transactions on, vol. 57, pp. 353-360, 2010.
    連結:
  36. [47] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, et al., "Effect of dislocation density on efficiency droop in GaInN∕GaN light-emitting diodes", Applied Physics Letters, vol. 91, pp. -, 2007.
    連結:
  37. [48] J. You and H. Johnson, "Effect of threading edge dislocations on the photoluminescence spectra for n-type wurtzite GaN," Physical Review B, vol. 76, p. 115336, 09/28/ 2007.
    連結:
  38. [49] J. H. You and H. T. Johnson, "Effect of screw dislocation density on optical properties in n-type wurtzite GaN", Journal of Applied Physics, vol. 101, pp. 023516, 2007.
    連結:
  39. [50] A. Trampert, O. Brandt, and K. H. Ploog, Semiconductors and Semimetals. vol. 50, I. P. Jacques and D. M. Theodore, Elsevier, pp. 167-192, 1997.
    連結:
  40. [51] J. T. Torvik, J. I. Pankove, and B. V. Zeghbroeck, "GaN/SiC heterojunction bipolar transistors", Solid-State Electronics, vol. 44, pp. 1229-1233, 2000.
    連結:
  41. [52] H. Lahrèche, M. Leroux, M. Laügt, M. Vaille, B. Beaumont, and P. Gibart, "Buffer free direct growth of GaN on 6H–SiC by metalorganic vapor phase epitaxy", Journal of Applied Physics, vol. 87, pp. 577-583, 2000.
    連結:
  42. [53] Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio, et al., "Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H–SiC Schottky diodes", Applied Physics Letters, vol. 76, pp. 2725-2727, 2000.
    連結:
  43. [54] M. A. Sánchez-Garcı́a, F. B. Naranjo, J. L. Pau, A. Jiménez, E. Calleja, and E. Muñoz, "Ultraviolet electroluminescence in GaN/AlGaN single-heterojunction light-emitting diodes grown on Si(111)", Journal of Applied Physics, vol. 87, pp. 1569-1571, 2000.
    連結:
  44. [55] S. Guha and N. A. Bojarczuk, "Ultraviolet and violet GaN light emitting diodes on silicon", Applied Physics Letters, vol. 72, pp. 415-417, 1998.
    連結:
  45. [56] S. Guha and N. A. Bojarczuk, "Multicolored light emitters on silicon substrates", Applied Physics Letters, vol. 73, pp. 1487-1489, 1998.
    連結:
  46. [57] S. Tomoya, L. Jeong-Sik, and O. Kohji, "Role of AlN/GaN Multilayer in Crack-Free GaN Layer Growth on 5”φ Si (111) Substrate", Japanese Journal of Applied Physics, vol. 43, p. L1595, 2004.
    連結:
  47. [58] T. Zheleva, S. Smith, D. Thomson, K. Linthicum, P. Rajagopal, and R. Davis, "Pendeo-epitaxy: A new approach for lateral growth of gallium nitride films", Journal of Electronic Materials, vol. 28, pp. L5-L8, 1999.
    連結:
  48. [59] H. Lahrèche, P. Vennéguès, B. Beaumont, and P. Gibart, "Growth of high-quality GaN by low-pressure metal-organic vapour phase epitaxy (LP-MOVPE) from 3D islands and lateral overgrowth", Journal of Crystal Growth, vol. 205, pp. 245-252, 1999.
    連結:
  49. [60] T. Sochacki, Z. Bryan, M. Amilusik, M. Bobea, M. Fijalkowski, I. Bryan, et al., "HVPE-GaN grown on MOCVD-GaN/sapphire template and ammonothermal GaN seeds: Comparison of structural, optical, and electrical properties", Journal of Crystal Growth, vol. 394, pp. 55-60, 5/15/ 2014.
    連結:
  50. [62] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures", Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
    連結:
  51. [63] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors", Applied Physics Letters, vol. 77, pp. 250-252, 2000.
    連結:
  52. [64] W. Pletschen, S. Linkohr, L. Kirste, V. Cimalla, S. Müller, M. Himmerlich, et al., "Changes of electronic properties of AlGaN/GaN HEMTs by surface treatment", MRS Online Proceedings Library, vol. 1736, mrsf14-1736-t02-03, 2015.
    連結:
  53. [66] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures", Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
    連結:
  54. [67] Z. Zhang, J. Zhang, H. Xu, Y. Duan, and Hao, "High temperature electron transport properties of AlGaN/GaN heterostructures with different Al-contents", Science in China. Series G, Physics, mechanics & astronomy, vol. 52, pp. 1879-1884, 2009.
    連結:
  55. [68] Y. Zhang and J. Singh, "Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor", Journal of Applied Physics, vol. 85, pp. 587-594, 1999.
    連結:
  56. [69] J. Antoszewski, M. Gracey, J. M. Dell, L. Faraone, T. A. Fisher, G. Parish, et al., "Scattering mechanisms limiting two-dimensional electron gas mobility in Al0.25Ga0.75N/GaN modulation-doped field-effect transistors", Journal of Applied Physics, vol. 87, pp. 3900-3904, 2000.
    連結:
  57. [70] D. Jena, A. C. Gossard, and U. K. Mishra, "Dislocation scattering in a two-dimensional electron gas", Applied Physics Letters, vol. 76, pp. 1707-1709, 2000.
    連結:
  58. [74] Z. Gao, M. F. Romero, and F. Calle, "Etching of AIGaN/GaN HEMT structures by Cl2-based ICP", Electron Devices (CDE) Conference, pp. 29-32, Spanish 2013.
    連結:
  59. [75] S. Arulkumaran, G. I. Ng, K. Ranjan, G. Z. Saw, P. P. Murmu, and J. Kennedy, "Improved device isolation in AlGaN/GaN HEMTs on Si by heavy Kr2+ Ion implantation", Device Research Conference (DRC), pp. 115-116, Santa Barbara, USA, 2014.
    連結:
  60. [76] S. S. Mahajan, A. Dhaul, R. Laishram, S. Kapoor, S. Vinayak, and B. K. Sehgal, "Micro-structural evaluation of Ti/Al/Ni/Au ohmic contacts with different Ti/Al thicknesses in AlGaN/GaN HEMTs", Materials Science and Engineering: B, vol. 183, pp. 47-53, 2014.
    連結:
  61. [77] A. Malmros, P. Gamarra, M. Thorsell, M.-A. d. Forte-Poisson, C. Lacam, M. Tordjman, et al., "Evaluation of an InAlN/AlN/GaN HEMT with Ta-based ohmic contacts and PECVD SiN passivation", physica status solidi (c), vol. 11, pp. 924-927, 2014.
    連結:
  62. [78] H.-K. Lin, F.-H. Huang, and H.-L. Yu, "DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths", Solid-State Electronics, vol. 54, pp. 582-585, 2010.
    連結:
  63. [79] M. Borgarino, R. Menozzi, Y. Baeyens, P. Cova, and F. Fantini, "Hot electron degradation of the DC and RF characteristics of AlGaAs/InGaAs/GaAs PHEMT's", Electron Devices, IEEE Transactions on, vol. 45, pp. 366-372, 1998.
    連結:
  64. [81] A. Sozza, C. Dua, E. Morvan, M. A. diForte-Poisson, S. Delage, F. Rampazzo, et al., "Evidence of traps creation in GaN/AlGaN/GaN HEMTs after a 3000 hour on-state and off-state hot-electron stress", Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 4 pp.-593, Washington, DC, USA, 2005.
    連結:
  65. [82] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, "Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors", Applied Physics Letters, vol. 71, pp. 2794-2796, 1997.
    連結:
  66. [85] J. A. del Alamo and J. Joh, "GaN HEMT reliability", Microelectronics Reliability, vol. 49, pp. 1200-1206, 2009.
    連結:
  67. [86] S. R. Lee, D. D. Koleske, K. C. Cross, J. A. Floro, K. E. Waldrip, A. T. Wise, et al., "In situ measurements of the critical thickness for strain relaxation in AlGaN∕GaN heterostructures" Applied Physics Letters, vol. 85, pp. 6164-6166, 2004.
    連結:
  68. [87] J. Joh, L. Xia, and J. A. del Alamo, "Gate current degradation mechanisms of GaN high electron mobility transistors", Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 385-388, Washington, DC, USA, 2007.
    連結:
  69. [88] D. Marcon, J. Viaene, P. Favia, H. Bender, X. Kang, S. Lenci, et al., "Reliability of AlGaN/GaN HEMTs: Permanent leakage current increase and output current drop", Microelectronics Reliability, vol. 52, pp. 2188-2193, 9// 2012.
    連結:
  70. [89] J. Joh, J. A. d. Alamo, K. Langworthy, S. Xie, and T. Zheleva, "Role of stress voltage on structural degradation of GaN high-electron-mobility transistors", Microelectronics Reliability, vol. 51, pp. 201-206, 2011.
    連結:
  71. [90] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Dietrich, et al., "Trapping effects and microwave power performance in AlGaN/GaN HEMTs", Electron Devices, IEEE Transactions on, vol. 48, pp. 465-471, 2001.
    連結:
  72. [92] R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," Electron Devices, IEEE Transactions on, vol. 48, pp. 560-566, 2001.
    連結:
  73. [93] K. Xin, W. Ke, L. Guoguo, L. Xinyu, W. Cuimei, and W. Xiaoliang, "Improved Performance of Highly Scaled AlGaN/GaN High-Electron-Mobility Transistors Using an AlN Back Barrier," Applied Physics Express, vol. 6, p. 051201, 2013.
    連結:
  74. [94] C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, G. Simin, et al., "AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect transistors," Applied Physics Letters, vol. 82, pp. 4593-4595, 2003.
    連結:
  75. [95] M. Z. Peng, Y. K. Zheng, Q. Ge, K. Wei, and X. Y. Liu, "Effect of pinch-off current leakage characteristics on microwave power performances of AlxGa1-xN/GaN HEMTs," Solid-State Electronics, vol. 80, pp. 1-4, February 2013.
    連結:
  76. [96] M. J. Uren, M. Silvestri, M. Casar, G. A. M. Hurkx, J. A. Croon, J. Sonsky, et al., "Intentionally carbon-doped AlGaN/GaN HEMTs: Necessity for vertical leakage paths," Electron Device Letters, IEEE, vol. 35, pp. 327-329, 2014.
    連結:
  77. [97] A. Hinoki, J. Kikawa, T. Yamada, T. Tsuchiya, S. Kamiya, M. Kurouchi, et al., "Effects of Traps Formed by Threading Dislocations on Off-State Breakdown Characteristics in GaN Buffer Layer in AlGaN/GaN Heterostructure Field-Effect Transistors," Appl. Phys. Express, vol. 1, p. 3, 2008.
    連結:
  78. [98] S. Josephine, S. S. Lawrence, and E. Takashi, "Effect of GaN Buffer Layer Growth Pressure on the Device Characteristics of AlGaN/GaN High-Electron-Mobility Transistors on Si," Jpn. J. Appl. Phys., vol. 48, 2009.
    連結:
  79. [99] L. Chuanhao, L. Zhonghui, P. Daqing, N. Jinyu, P. Lei, Z. Dongguo, et al., "Improvement of breakdown and current collapse characteristics of GaN HEMT with a polarization-graded AlGaN buffer," Semiconductor Science and Technology, vol. 30, p. 035007, 2015.
    連結:
  80. [100] S. Y. Jang, J.-H. Shin, E. J. Hwang, H.-S. Choi, H. Jeong, S.-H. Song, et al., "Investigation of Buffer Traps in AlGaN/GaN Heterostructure Field-Effect Transistors Using a Simple Test Structure," Journal of Semiconductor Technology and Science, vol. 14, pp 478-483, August 2014.
    連結:
  81. [101] T. T. Luong, Y. T. Ho, B. T. Tran, Y. Y. Woong, and E. Y. Chang, "Barrier Strain and Carbon Incorporation-Engineered Performance Improvements for AlGaN/GaN High Electron Mobility Transistors," Chemical Vapor Deposition, vol. 21, pp. 33-40, 2015.
    連結:
  82. [102] R. Jakiela, E. Dumiszewska, P. Caban, A. Stonert, A. Turos, and A. Barcz, "Oxygen diffusion into GaN from oxygen implanted GaN or Al2O3," physica status solidi (c), vol. 8, pp. 1513-1515, 2011.
    連結:
  83. [103] S. Keller, W. Yi-Feng, G. Parish, Z. Naiqian, J. J. Xu, B. P. Keller, et al., "Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB," Electron Devices, IEEE Transactions on, vol. 48, pp. 552-559, 2001.
    連結:
  84. [105] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," Journal of Applied Physics, vol. 83, pp. 3656-3659, 1998.
    連結:
  85. [107] Y. C. Choi, M. Pophristic, B. Peres, H.-Y. Cha, M. G. Spencer, and L. F. Eastman, "High breakdown voltage C-doped GaN-on-sapphire HFETs with a low specific on-resistance," Semiconductor Science and Technology, vol. 22, p. 517, 2007.
    連結:
  86. [108] H. Yu, S. B. Lisesivdin, B. Bolukbas, O. Kelekci, M. K. Ozturk, S. Ozcelik, et al., "Improvement of breakdown characteristics in AlGaN/GaN/AlxGa1−xN HEMT based on a grading AlxGa1−xN buffer layer," physica status solidi (a), vol. 207, pp. 2593-2596, 2010.
    連結:
  87. [109] H. Yu, D. Caliskan, and E. Ozbay, "Growth of high crystalline quality semi-insulating GaN layers for high electron mobility transistor applications," Journal of Applied Physics, vol. 100, p. 033501, 2006.
    連結:
  88. [110] C.-F. Lo, L. Liu, T. S. Kang, F. Ren, O. Laboutin, Y. Cao, et al., "Effect of buffer layer structure on electrical and structural properties of AlGaN/GaN high electron mobility transistors," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 30, pp. 011205-7, January 2012.
    連結:
  89. [111] H. M. Manasevit, "GaAs Heteroepitaxy on Insulating Substrates by Chemical Vapor Deposition," Journal of Vacuum Science & Technology, vol. 9, pp. 224-224, 1972.
    連結:
  90. [113] M. J. Ludowise, "Metalorganic chemical vapor deposition of III‐V semiconductors," Journal of Applied Physics, vol. 58, pp. R31-R55, 1985.
    連結:
  91. [114] A. C. Jones, "Metalorganic precursors for vapour phase epitaxy," Journal of Crystal Growth, vol. 129, pp. 728-773, April 1993.
    連結:
  92. [115] A. G. Thompson, "MOCVD technology for semiconductors," Materials Letters, vol. 30, pp. 255-263, March 1997.
    連結:
  93. [118] S. Nakamura, Y. Harada, and M. Seno, "Novel metalorganic chemical vapor deposition system for GaN growth," Applied Physics Letters, vol. 58, pp. 2021-2023, 1991.
    連結:
  94. [119] D. Sengupta, S. Mazumder, W. Kuykendall, and S. A. Lowry, "Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth," Journal of Crystal Growth, vol. 279, pp. 369-382, June 2005.
    連結:
  95. [121] X. G. He, D. G. Zhao, D. S. Jiang, Z. S. Liu, P. Chen, L. C. Le, et al., "Control of residual carbon concentration in GaN high electron mobility transistor and realization of high-resistance GaN grown by metal-organic chemical vapor deposition," Thin Solid Films, vol. 564, pp. 135-139, August 2014.
    連結:
  96. [122] K. Kusakabe, A. Hirako, S. Tanaka, and K. Ohkawa, "Computational fluid dynamics on gaseous and surface chemistry of GaN-MOVPE system for various pressures," physica status solidi (c), vol. 1, pp. 2569-2572, 2004.
    連結:
  97. [123] K. Matsumoto, “Faster, Better III-N Film Growth”, Available from: http://www.powerelectronicsworld.net/article/1/19737506-faster,-better-iii-n-film-growth.html, 2014
    連結:
  98. [124] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, et al., "Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE," Journal of Crystal Growth, vol. 115, pp. 628-633, December 1991.
    連結:
  99. [125] F. Dwikusuma, D. Saulys, and T. F. Kuech, "Study on Sapphire Surface Preparation for III-Nitride Heteroepitaxial Growth by Chemical Treatments," Journal of The Electrochemical Society, vol. 149, pp. G603-G608, November 2002.
    連結:
  100. [126] J. Cui, A. Sun, M. Reshichkov, F. Yun, A. Baski, and H. Morkoç, "Preparation of Sapphire for High Quality III-Nitride Growth," MRS Internet Journal of Nitride Semiconductor Research, vol. 5, pp. e7, 2000.
    連結:
  101. [127] G. Yuval, F. Paul, P. D. Steven , and S. S. James "Substrate Reactivity and “Controlled Contamination” in Metalorganic Chemical Vapor Deposition of GaN on Sapphire," Japanese Journal of Applied Physics, vol. 37, p. 4695, 1998.
    連結:
  102. [128] S. Keller, B. P. Keller, Y. F. Wu, B. Heying, D. Kapolnek, J. S. Speck, et al., "Influence of sapphire nitridation on properties of gallium nitride grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 68, pp. 1525-1527, 1996.
    連結:
  103. [129] L. Sugiura, K. Itaya, J. Nishio, H. Fujimoto, and Y. Kokubun, "Effects of thermal treatment of low-temperature GaN buffer layers on the quality of subsequent GaN layers," Journal of Applied Physics, vol. 82, pp. 4877-4882, 1997.
    連結:
  104. [130] G. Pierre, "Metal organic vapour phase epitaxy of GaN and lateral overgrowth," Reports on Progress in Physics, vol. 67, p. 667, 2004.
    連結:
  105. [131] V. M. Torres, J. L. Edwards, B. J. Wilkens, D. J. Smith, R. B. Doak, and I. S. T. Tsong, "Influence of 6H–SiC(0001) substrate surface morphology on the growth of AlN epitaxial layers," Applied Physics Letters, vol. 74, pp. 985-987, 1999.
    連結:
  106. [132] D. J. Smith, D. Chandrasekhar, B. Sverdlov, A. Botchkarev, A. Salvador, and H. Morkoç, "Characterization of structural defects in wurtzite GaN grown on 6H SiC using plasma‐enhanced molecular beam epitaxy," Applied Physics Letters, vol. 67, pp. 1830-1832, 1995.
    連結:
  107. [133] A. Kawasuso, K. Kojima, M. Yoshikawa, H. Itoh, and K. Narumi, "Effect of hydrogen etching on 6H SiC surface morphology studied by reflection high-energy positron diffraction and atomic force microscopy," Applied Physics Letters, vol. 76, pp. 1119-1121, 2000.
    連結:
  108. [134] F. Owman, C. Hallin, P. Mårtensson, and E. Janzén, "Removal of polishing-induced damage from 6H-SiC(0001) substrates by hydrogen etching," Journal of Crystal Growth, vol. 167, pp. 391-395, September 1996.
    連結:
  109. [135] K. H. Ploog, O. Brandt, R. Muralidharan, A. Thamm, and P. Waltereit, "Growth of high-quality (Al,Ga)N and (Ga,In)N heterostructures on SiC(0001) by both plasma-assisted and reactive molecular beam epitaxy," Journal of Vacuum Science & Technology B, vol. 18, pp. 2290-2294, 2000.
    連結:
  110. [137] T. Ito, K. Ohtsuka, K. Kuwahara, M. Sumiya, Y. Takano, and S. Fuke, "Effect of AlN buffer layer deposition conditions on the properties of GaN layer," Journal of Crystal Growth, vol. 205, pp. 20-24, August 1999.
    連結:
  111. [138] P. Waltereit, O. Brandt, A. Trampert, M. Ramsteiner, M. Reiche, M. Qi, et al., "Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6H–SiC(0001)," Applied Physics Letters, vol. 74, pp. 3660-3662, 1999.
    連結:
  112. [139] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtani, and R. Beresford, "Demonstration of a silicon field‐effect transistor using AlN as the gate dielectric," Applied Physics Letters, vol. 66, pp. 3179-3181, 1995.
    連結:
  113. [141] A. Strittmatter, A. Krost, M. Straßburg, V. Türck, D. Bimberg, J. Bläsing, et al., "Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer," Applied Physics Letters, vol. 74, pp. 1242-1244, 1999.
    連結:
  114. [142] N. P. Kobayashi, J. T. Kobayashi, P. D. Dapkus, W.-J. Choi, A. E. Bond, X. Zhang, et al., "GaN growth on Si(111) substrate using oxidized AlAs as an intermediate layer," Applied Physics Letters, vol. 71, pp. 3569-3571, 1997.
    連結:
  115. [143] S. A. Nikishin, N. N. Faleev, V. G. Antipov, S. Francoeur, L. Grave de Peralta, G. A. Seryogin, et al., "High quality GaN grown on Si(111) by gas source molecular beam epitaxy with ammonia," Applied Physics Letters, vol. 75, pp. 2073-2075, 1999.
    連結:
  116. [144] F. Semond, B. Damilano, S. Vézian, N. Grandjean, M. Leroux, and J. Massies, "GaN grown on Si(111) substrate: From two-dimensional growth to quantum well assessment," Applied Physics Letters, vol. 75, pp. 82-84, 1999.
    連結:
  117. [145] J. W. Lee, S. W. Park, and J. B. Yoo, "The Application of a Low Temperature GaN Buffer Layer to Thick GaN Film Growth on ZnO/Si Substrate," physica status solidi (a), vol. 176, pp. 583-587, 1999.
    連結:
  118. [146] H. Ishikawa, K. Yamamoto, T. Egawa, T. Soga, T. Jimbo, and M. Umeno, "Thermal stability of GaN on (1 1 1) Si substrate," Journal of Crystal Growth, vol. 189–190, pp. 178-182, June 1998.
    連結:
  119. [148] H. M. Liaw, R. Doyle, P. L. Fejes, S. Zollner, A. Konkar, K. J. Linthicum, et al., "Crystallinity and microstructures of aluminum nitride films deposited on Si(111) substrates," Solid-State Electronics, vol. 44, pp. 747-755, April 2000.
    連結:
  120. [149] R. Jakiela, A. Barcz, E. Dumiszewska, and A. Jagoda, "Si diffusion in epitaxial GaN," physica status solidi (c), vol. 3, pp. 1416-1419, 2006.
    連結:
  121. [150] S. Zamir, B. Meyler, E. Zolotoyabko, and J. Salzman, "The effect of AlN buffer layer on GaN grown on (1;1;1)-oriented Si substrates by MOCVD," Journal of Crystal Growth, vol. 218, pp. 181-190, September 2000.
    連結:
  122. [151] A. Hashimoto, Y. Aiba, T. Motizuki, M. Ohkubo, and A. Yamamoto, "Initial growth stage of GaN on Si substrate by alternating source supply using dimethyl-hydrazine," Journal of Crystal Growth, vol. 175–176, Part 1, pp. 129-133, May 1997.
    連結:
  123. [152] H. Marchand, N. Zhang, L. Zhao, Y. Golan, S. J. Rosner, G. Girolami, et al., "Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer," MRS Internet Journal of Nitride Semiconductor Research, vol. 4, pp.e2, 1999.
    連結:
  124. [153] Madelung, Semiconductors Group IV Elements and III-V Compounds, Berlin: Spinger, 1991.
    連結:
  125. [154] H. Ishikawa, G. Y. Zhao, N. Nakada, T. Egawa, T. Soga, T. Jimbo, et al., "High-Quality GaN on Si Substrate Using AlGaN/AlN Intermediate Layer," physica status solidi (a), vol. 176, pp. 599-603, 1999.
    連結:
  126. [155] H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, et al., "Metalorganic chemical vapor deposition of GaN on Si(111): Stress control and application to field-effect transistors," Journal of Applied Physics, vol. 89, pp. 7846-7851, 2001.
    連結:
  127. [156] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, et al., "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 79, pp. 3230-3232, 2001.
    連結:
  128. [157] A. Engin, K. O. Mustafa, T. Ali, O. Suleyman, and O. Ekmel, "Buffer optimization for crack-free GaN epitaxial layers grown on Si(1 1 1) substrate by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 155317, 2008.
    連結:
  129. [158] W. Yun-Hsiang, C. L. Yung, S. S. Ganesh, C. Ting-Fu, H. Chih-Fang, Y. Li, et al., "Modelling temperature dependence on AlGaN/GaN power HEMT device characteristics," Semiconductor Science and Technology, vol. 28, p. 125010, 2013.
    連結:
  130. [160] V. Kumar, G. Chen, G. Shiping, and I. Adesida, "Field-plated 0.25-μm gate-length AlGaN/GaN HEMTs with varying field-plate length," Electron Devices, IEEE Transactions on, vol. 53, pp. 1477-1480, 2006.
    連結:
  131. [161] G. Yu, Y. Wang, Y. Cai, Z. Dong, C. Zeng, and B. Zhang, "Dynamic Characterizations of AlGaN/GaN HEMTs With Field Plates Using a Double-Gate Structure," IEEE electron device letters, vol. 34, pp. 217-219, 2013.
    連結:
  132. [162] C. Yong, C. Zhiqun, Y. Zhenchuan, T. Chak Wah, L. Kei May, and K. J. Chen, "High-Temperature Operation of AlGaN/GaN HEMTs Direct-Coupled FET Logic (DCFL) Integrated Circuits," Electron Device Letters, IEEE, vol. 28, pp. 328-331, 2007.
    連結:
  133. [164] G. A. Slack, L. J. Schowalter, D. Morelli, and J. A. Freitas Jr, "Some effects of oxygen impurities on AlN and GaN," Journal of Crystal Growth, vol. 246, pp. 287-298, December 2002.
    連結:
  134. [165] G. Parish, S. Keller, S. P. Denbaars, and U. K. Mishra, "SIMS investigations into the effect of growth conditions on residual impurity and silicon incorporation in GaN and AlxGa1−xN," Journal of Electronic Materials, vol. 29, pp. 15-20, January 2000.
    連結:
  135. [166] J. W. P. Hsu, D. V. Lang, S. Richter, R. N. Kleiman, A. M. Sergent, D. C. Look, et al., "Impurity band in the interfacial region of GaN films grown by hydride vapor phase epitaxy," Journal of Electronic Materials, vol. 30, pp. 115-122, March 2001.
    連結:
  136. [167] D. F. Storm, D. S. Katzer, S. C. Binari, E. R. Glaser, B. V. Shanabrook, and J. A. Roussos, "Reduction of buffer layer conduction near plasma-assisted molecular-beam epitaxy grown GaN/AlN interfaces by beryllium doping," Applied Physics Letters, vol. 81, pp. 3819-3821, 2002.
    連結:
  137. [169] A. Wysmolek, K. P. Korona, R. Stȩpniewski, J. M. Baranowski, J. Błoniarz, M. Potemski, et al., "Recombination of excitons bound to oxygen and silicon donors in freestanding GaN," Physical Review B, vol. 66, p. 245317, December 2002.
    連結:
  138. [170] M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C.-H. Hong, et al., "Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers," Applied Physics Letters, vol. 77, pp. 2557-2559, 2000.
    連結:
  139. [171] A. Janotti, S.-H. Wei, and S. B. Zhang, "Donor--donor binding in semiconductors: Engineering shallow donor levels for ZnTe," Applied Physics Letters, vol. 83, pp. 3522-3524, 2003.
    連結:
  140. [173] M. G. Ganchenkova and R. M. Nieminen, "Nitrogen Vacancies as Major Point Defects in Gallium Nitride," Physical Review Letters, vol. 96, p. 196402, May 2006.
    連結:
  141. [174] J. Neugebauer and C. G. Van de Walle, "Hydrogen in GaN: Novel Aspects of a Common Impurity," Physical Review Letters, vol. 75, pp. 4452-4455, December 1995.
    連結:
  142. [175] C. G. Van de Walle, C. Stampfl, and J. Neugebauer, "Theory of doping and defects in III–V nitrides," Journal of Crystal Growth, vol. 189–190, pp. 505-510, June 1998.
    連結:
  143. [176] Y. Hongbo, M. Kemal Ozturk, S. Ozcelik, and E. Ozbay, "A study of semi-insulating GaN grown on AlN buffer/sapphire substrate by metalorganic chemical vapor deposition," Journal of Crystal Growth, vol. 293, pp. 273-277, August 2006.
    連結:
  144. [177] S. Arulkumaran, M. Sakai, T. Egawa, H. Ishikawa, T. Jimbo, T. Shibata, et al., "Improved dc characteristics of AlGaN/GaN high-electron-mobility transistors on AlN/sapphire templates," Applied Physics Letters, vol. 81, pp. 1131-1133, 2002.
    連結:
  145. [178] J. R. Shealy, V. Kaper, V. Tilak, T. Prunty, J. A. Smart, B. Green, et al., "An AlGaN/GaN high-electron-mobility transistor with an AlN sub-buffer layer," Journal of Physics: Condensed Matter, vol. 14, p. 3499, 2002.
    連結:
  146. [179] B. Segall and G. D. Mahan, "Phonon-Assisted Recombination of Free Excitons in Compound Semiconductors," Physical Review, vol. 171, pp. 935-948, 07/15/ 1968.
    連結:
  147. [180] W. Shan, T. J. Schmidt, X. H. Yang, S. J. Hwang, J. J. Song, and B. Goldenberg, "Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 66, pp. 985-987, 1995.
    連結:
  148. [181] F. Zhang, S. J. Xu, J. Q. Ning, C. C. Zheng, D. G. Zhao, H. Yang, et al., "Optical properties of light-hole excitons in GaN epilayers," Journal of Applied Physics, vol. 108, p. 116103, 2010.
    連結:
  149. [182] H. Abbas and M. Player, "Optical and Electrical Properties of Undoped GaN Films on Sapphire substrate Grown By Metalorganic Chemical Vapor Deposition," Nature & Science, vol. 12, pp 80, 2014.
    連結:
  150. [183] L. Besombes, K. Kheng, L. Marsal, and H. Mariette, "Acoustic phonon broadening mechanism in single quantum dot emission," Physical Review B, vol. 63, p. 155307, March 2001.
    連結:
  151. [184] P. P. Paskov, T. Paskova, P. O. Holtz, and B. Monemar, "Polarized photoluminescence study of free and bound excitons in free-standing GaN", Physical Review B, vol. 70, p. 035210, July 2004.
    連結:
  152. [186] G. Ramírez-Flores, H. Navarro-Contreras, A. Lastras-Martínez, R. C. Powell, and J. E. Greene, "Temperature-dependent optical band gap of the metastable zinc-blende structure -GaN," Physical Review B, vol. 50, pp. 8433-8438, September 1994.
    連結:
  153. [187] M. A. Reshchikov, Y. T. Moon, and H. Morkoç, "Origin of unstable photoluminescence in GaN: metastable defects or surface states?," physica status solidi (c), vol. 2, pp. 2716-2719, 2005.
    連結:
  154. [188] W. Shan, B. D. Little, A. J. Fischer, J. J. Song, B. Goldenberg, W. G. Perry, et al., "Binding energy for the intrinsic excitons in wurtzite GaN," Physical Review B, vol. 54, pp. 16369-16372, December 1996.
    連結:
  155. [190] M. A. Reshchikov and H. Morkoç, "Luminescence properties of defects in GaN," Journal of Applied Physics, vol. 97, p. 061301, 2005.
    連結:
  156. [191] K. Domen, A. Kuramata, and T. Tanahashi, "Lasing mechanism of InGaN/GaN/AlGaN multiquantum well laser diode," Applied Physics Letters, vol. 72, pp. 1359-1361, March 1998.
    連結:
  157. [192] X.-B. Chen, J. Huso, J. L. Morrison, and L. Bergman, "Dynamics of GaN band edge photoluminescence at near-room-temperature regime," Journal of Applied Physics, vol. 99, p. 046105, 2006.
    連結:
  158. [193] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, et al., "Temperature quenching of photoluminescence intensities in undoped and doped GaN," Journal of Applied Physics, vol. 86, pp. 3721-3728, 1999.
    連結:
  159. [194] X. Xu, H. Liu, C. Shi, Y. Zhao, S. Fung, and C. D. Beling, "Residual donors and compensation in metalorganic chemical vapor deposition as-grown n-GaN," Journal of Applied Physics, vol. 90, pp. 6130-6134, 2001.
    連結:
  160. [195] H. Hideki, M. Noritoshi, F. Sachie, T. Shiro, and K. Norihiko, "Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes," Japanese Journal of Applied Physics, vol. 53, p. 100209, 2014.
    連結:
  161. [196] P. E. Malinowski, J.-Y. Duboz, P. De Moor, K. Minoglou, J. John, S. M. Horcajo, et al., "Extreme ultraviolet detection using AlGaN-on-Si inverted Schottky photodiodes," Applied Physics Letters, vol. 98, p. 141104, 2011.
    連結:
  162. [197] L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, et al., "AlGaN/AlN/GaN high-power microwave HEMT," Electron Device Letters, IEEE, vol. 22, pp. 457-459, 2001.
    連結:
  163. [198] S. S. Islam and A. F. M. Anwar, "High frequency GaN/AlGaN HEMT class-E power amplifier," Solid-State Electronics, vol. 46, pp. 1621-1625, October 2002.
    連結:
  164. [199] D. G. Zhao, D. S. Jiang, J. J. Zhu, Z. S. Liu, S. M. Zhang, H. Yang, et al., "Al composition variations in AlGaN films grown on low-temperature GaN buffer layer by metalorganic chemical vapor deposition," Journal of Crystal Growth, vol. 310, pp. 5266-5269, December 2008.
    連結:
  165. [201] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, et al., "Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure," Journal of Crystal Growth, vol. 223, pp. 83-91, February 2001.
    連結:
  166. [202] P. J. Parbrook, M. A. Whitehead, R. J. Lynch, and R. T. Murray, "Crack Nucleation in AlGaN/GaN Heterostructures," MRS Online Proceedings Library, vol. 743, pp. L7-10, 2002.
    連結:
  167. [203] M. Z. Peng, L. W. Guo, J. Zhang, X. L. Zhu, N. S. Yu, J. F. Yan, et al., "Reducing dislocations of Al-rich AlGaN by combining AlN buffer and AlN/Al0.8Ga0.2N superlattices," Journal of Crystal Growth, vol. 310, pp. 1088-1092, March 2008.
    連結:
  168. [204] L. J. Schowalter, Y. Shusterman, R. Wang, I. Bhat, G. Arunmozhi, and G. A. Slack, "Epitaxial growth of AlN and Al0.5Ga0.5N layers on aluminum nitride substrates," Applied Physics Letters, vol. 76, pp. 985-987, 2000.
    連結:
  169. [205] G. Tamulaitis, I. Yilmaz, M. S. Shur, Q. Fareed, R. Gaska, and M. A. Khan, "Photoluminescence of AlGaN grown on bulk AlN substrates," Applied Physics Letters, vol. 85, pp. 206-208, 2004.
    連結:
  170. [206] T. Asai, K. Nagata, T. Mori, K. Nagamatsu, M. Iwaya, S. Kamiyama, et al., "Relaxation and recovery processes of AlxGa1−xN grown on AlN underlying layer," Journal of Crystal Growth, vol. 311, pp. 2850-2852, May2009.
    連結:
  171. [207] R. Q. Jin, J. P. Liu, J. C. Zhang, and H. Yang, "Growth of crack-free AlGaN film on thin AlN interlayer by MOCVD," Journal of Crystal Growth, vol. 268, pp. 35-40, July 2004.
    連結:
  172. [208] W. V. Lundin et al., MOCVD Growth of AlGaN Epilayers and AlGaN/GaN SLs in a Wide Composition Range vol. 144, pp. 223-231, Springer Netherlands, 2004.
    連結:
  173. [209] S. Kim, J. Seo, K. Lee, H. Lee, K. Park, Y. Kim, et al., "Growth of AlGaN epilayers related gas-phase reactions using TPIS-MOCVD," Journal of Crystal Growth, vol. 245, pp. 247-253, November 2002.
    連結:
  174. [210] C. H. Chen, H. Liu, D. Steigerwald, W. Imler, C. P. Kuo, M. G. Craford, et al., "A study of parasitic reactions between NH3 and TMGa or TMAI," Journal of Electronic Materials, vol. 25, pp. 1004-1008, June 1996.
    連結:
  175. [211] B. K. Meyer, G. Steude, A. Göldner, A. Hoffmann, H. Amano, and I. Akasaki, "Photoluminescence Investigations of AlGaN on GaN Epitaxial Films," physica status solidi (b), vol. 216, pp. 187-191, 1999.
    連結:
  176. [212] H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, "Time-resolved photoluminescence studies of AlxGa1−xN alloys," Applied Physics Letters, vol. 76, pp. 1252-1254, 2000.
    連結:
  177. [213] L. Bergman, X.-B. Chen, D. McIlroy, and R. F. Davis, "Probing the AlxGa1−xN spatial alloy fluctuation via UV-photoluminescence and Raman at submicron scale," Applied Physics Letters, vol. 81, pp. 4186-4188, 2002.
    連結:
  178. [214] A. Cros, H. Angerer, O. Ambacher, M. Stutzmann, R. Höpler, and T. Metzger, "Raman study of the optical phonons in AlxGa1−xN alloys," Solid State Communications, vol. 104, pp. 35-39, October 1997.
    連結:
  179. [215] L. Bergman, M. D. Bremser, W. G. Perry, R. F. Davis, M. Dutta, and R. J. Nemanich, "Raman analysis of the configurational disorder in AlxGa1−xN films," Applied Physics Letters, vol. 71, pp. 2157-2159, 1997.
    連結:
  180. [216] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, "Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices," Journal of Applied Physics, vol. 81, pp. 6332-6338, 1997.
    連結:
  181. [217] F. Fedler, R. J. Hauenstein, H. Klausing, D. Mistele, O. Semchinova, J. Aderhold, et al., "Strain, morphological, and growth-mode changes in AlGaN single layers at high AlN mole fraction," Journal of Crystal Growth, vol. 241, pp. 535-542, June 2002.
    連結:
  182. [219] H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, et al., "Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films," Applied Physics Letters, vol. 71, pp. 1504-1506, 1997.
    連結:
  183. [221] A. F. Wright, "Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN," Journal of Applied Physics, vol. 82, pp. 2833-2839, 1997.
    連結:
  184. [223] A. Touré, I. Halidou, Z. Benzarti, A. Fouzri, A. Bchetnia, and B. El Jani, "Characterization of low Al content AlxGa1−xN epitaxial films grown by atmospheric-pressure MOVPE," physica status solidi (a), vol. 209, pp. 977-983, 2012.
    連結:
  185. [224] D. Billingsley, W. Henderson, D. Pritchett, and W. Alan Doolittle, "Growth and characterization of AlxGa1−xN via NH3-based metal-organic molecular beam epitaxy," Journal of Crystal Growth, vol. 311, pp. 1328-1332, February 2009.
    連結:
  186. [225] K. B. Nam, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, "Deep impurity transitions involving cation vacancies and complexes in AlGaN alloys," Applied Physics Letters, vol. 86, p. 222108, 2005.
    連結:
  187. [226] Q. Sun, J. Wang, H. Wang, R. Jin, D. Jiang, J. Zhu, et al., "High-temperature AlN interlayer for crack-free AlGaN growth on GaN," Journal of Applied Physics, vol. 104, p. 043516, 2008.
    連結:
  188. [227] J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, "The origin of stress reduction by low-temperature AlN interlayers," Applied Physics Letters, vol. 81, pp. 2722-2724, 2002.
    連結:
  189. [228] K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, "Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors," Applied Physics Letters, vol. 78, pp. 3205-3207, 2001.
    連結:
  190. [229] Q. Sun, Y. Huang, H. Wang, J. Chen, R. Q. Jin, S. M. Zhang, et al., "Lateral phase separation in AlGaN grown on GaN with a high-temperature AlN interlayer," Applied Physics Letters, vol. 87, p. 121914, 2005.
    連結:
  191. [230] Q. Sun, H. Wang, D. S. Jiang, R. Q. Jin, Y. Huang, S. M. Zhang, et al., "Spatial distribution of deep level defects in crack-free AlGaN grown on GaN with a high-temperature AlN interlayer," Journal of Applied Physics, vol. 100, p. 123101, 2006.
    連結:
  192. [231] Z. X. Qin, H. J. Luo, Z. Z. Chen, T. J. Yu, Z. J. Yang, K. Xu, et al., "Effect of AlN interlayer on incorporation efficiency of Al composition in AlGaN grown by MOVPE," Journal of Crystal Growth, vol. 298, pp. 354-356, January 2007.
    連結:
  193. [232] B. Liu, R. Zhang, J. G. Zheng, X. L. Ji, D. Y. Fu, Z. L. Xie, et al., "Composition pulling effect and strain relief mechanism in AlGaN/AlN distributed Bragg reflectors," Applied Physics Letters, vol. 98, p. 261916, 2011.
    連結:
  194. [233] S. Niraj Man, L. Yiming, and C. Edward Yi, "Simulation study on electrical characteristic of AlGaN/GaN high electron mobility transistors with AlN spacer layer," Japanese Journal of Applied Physics, vol. 53, p. 04EF08, 2014.
    連結:
  195. [234] S. Çörekçi, M. K. Öztürk, B. Akaoğlu, M. Çakmak, S. Özçelik, and E. Özbay, "Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer," Journal of Applied Physics, vol. 101, p. 123502, 2007.
    連結:
  196. [235] R. Emrick, P. Cruz, N. B. Carvalho, S. Gao, R. Quay, and P. Waltereit, "The Sky's the Limit: Key Technology and Market Trends in Satellite Communications," Microwave Magazine, IEEE, vol. 15, pp. 65-78, 2014.
    連結:
  197. [236] S. Rajan, P. Waltereit, C. Poblenz, S. J. Heikman, D. S. Green, J. S. Speck, et al., "Power performance of AlGaN-GaN HEMTs grown on SiC by plasma-assisted MBE," Electron Device Letters, IEEE, vol. 25, pp. 247-249, 2004.
    連結:
  198. [237] S. Ganguly, B. Song, W. S. Hwang, Z. Hu, M. Zhu, J. Verma, et al., "AlGaN/GaN HEMTs on Si by MBE with regrown contacts and fT = 153 GHz," physica status solidi (c), vol. 11, pp. 887-889, 2014.
    連結:
  199. [238] S. Keller, G. Parish, P. T. Fini, S. Heikman, C. Chen, x, et al., "Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 86, pp. 5850-5857, 1999.
    連結:
  200. [239] L. T. Tung, K. L. Lin, E. Y. Chang, W. C. Huang, Y. L. Hsiao, and C. H. Chiang, "Photoluminescence and Raman studies of GaN films grown by MOCVD," Journal of Physics: Conference Series, vol. 187, p. 012021, 2009.
    連結:
  201. [240] S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, "Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 81, pp. 439-441, July 2002.
    連結:
  202. [241] S. Josephine, S. L. Selvaraj, and E. Takashi, "Effect of GaN Buffer Layer Growth Pressure on the Device Characteristics of AlGaN/GaN High-Electron-Mobility Transistors on Si," Japanese Journal of Applied Physics, vol. 48, p. 121002, 2009.
    連結:
  203. [242] D.-S. Kim, K.-S. Im, H.-S. Kang, K.-W. Kim, S.-B. Bae, J.-K. Mun, et al., "Normally-Off AlGaN/GaN Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistor with Recessed Gate and p-GaN Back-Barrier," Jpn. J. Appl. Phys., vol. 51, pp 034101, 2012.
    連結:
  204. [243] F. Meng, J. Zhang, H. Zhou, J. Ma, J. Xue, L. Dang, et al., "Transport characteristics of AlGaN/GaN/AlGaN double heterostructures with high electron mobility," Journal of Applied Physics, vol. 112, pp. 023707-6, July 2012.
    連結:
  205. [244] E. Zanoni, M. Meneghini, A. Chini, D. Marcon, and G. Meneghesso, "AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction," Electron Devices, IEEE Transactions on, vol. 60, pp. 3119-3131, 2013.
    連結:
  206. [247] D. Buttari, A. Chini, G. Meneghesso, E. Zanoni, P. Chavarkar, R. Coffie, et al., "Systematic characterization of Cl2 reactive ion etching for gate recessing in AlGaN/GaN HEMTs," Electron Device Letters, IEEE, vol. 23, pp. 118-120, 2002.
    連結:
  207. [248] S. Arulkumaran, G. I. Ng, and Z. H. Liu, "Effect of gate-source and gate-drain Si3N4 passivation on current collapse in AlGaN∕GaN high-electron-mobility transistors on silicon," Applied Physics Letters, vol. 90, pp. 173540, 2007.
    連結:
  208. [249] M. L. Nakarmi, B. Cai, J. Y. Lin, and H. X. Jiang, "Three-step growth method for high quality AlN epilayers," physica status solidi (a), vol. 209, pp. 126-129, 2012.
    連結:
  209. [250] C. H. Chiang, K. M. Chen, Y. H. Wu, Y. S. Yeh, W. I. Lee, J. F. Chen, et al., "Nonpolar a-plane GaN grown on r-plane sapphire using multilayer AlN buffer by metalorganic chemical vapor deposition," Applied Surface Science, vol. 257, pp. 2415-2418, January 2011.
    連結:
  210. [251] S. Çörekçi, M. K. Öztürk, A. Bengi, M. Çakmak, S. Özçelik, and E. Özbay, "Characterization of an AlN buffer layer and a thick-GaN layer grown on sapphire substrate by MOCVD," Journal of Materials Science, vol. 46, pp. 1606-1612, March 2011.
    連結:
  211. [252] E. D. Bourret-Courchesne, S. Kellermann, K. M. Yu, M. Benamara, Z. Liliental-Weber, J. Washburn, et al., "Reduction of threading dislocation density in GaN using an intermediate temperature interlayer," Applied Physics Letters, vol. 77, pp. 3562-3564, 2000.
    連結:
  212. [253] J. Liu, J. zhang, Q. Mao, X. Wu, and F. Jiang, "Effects of AlN interlayer on growth of GaN-based LED on patterned silicon substrate," CrystEngComm, vol. 15, pp. 3372-3376, 2013.
    連結:
  213. [254] J. L. Farvacque and Z. Bougrioua, "Carrier mobility versus carrier density in AlxGa1-xN/GaN quantum wells," Physical Review B, vol. 68, p. 035335, July 2003.
    連結:
  214. [255] F. Carosella and J.-L. Farvacque, "Effect of threading dislocations on carrier mobility in AlGaN/GaN quantum wells," Journal of Physics: Condensed Matter, vol. 20, p. 325210, 2008.
    連結:
  215. [256] J. L. Farvacque, Z. Bougrioua, and I. Moerman, "Free-carrier mobility in GaN in the presence of dislocation walls," Physical Review B, vol. 63, p. 115202, Febuary 2001.
    連結:
  216. [257] S. W. Kaun, P. G. Burke, M. H. Wong, E. C. H. Kyle, U. K. Mishra, and J. S. Speck, "Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures," Applied Physics Letters, vol. 101, pp. 262102-4, December 2012.
    連結:
  217. [258] Z. Bougrioua, I. Moerman, L. Nistor, B. Van Daele, E. Monroy, T. Palacios, et al., "Engineering of an insulating buffer and use of AlN interlayers: two optimisations for AlGaN–GaN HEMT-like structures," physica status solidi (a), vol. 195, pp. 93-100, 2003.
    連結:
  218. [259] S. Kenji, M. Takashi, S. Tetsuya, and S. Naoteru, "Effect of Epitaxial Layer Crystal Quality on DC and RF Characteristics of AlGaN/GaN Short-Gate High-Electron-Mobility Transistors on Sapphire Substrates," Japanese Journal of Applied Physics, vol. 44, p. 8435, 2005.
    連結:
  219. [260] J. L. Weyher, P. D. Brown, A. R. A. Zauner, S. Müller, C. B. Boothroyd, D. T. Foord, et al., "Morphological and structural characteristics of homoepitaxial GaN grown by metalorganic chemical vapour deposition (MOCVD)," Journal of Crystal Growth, vol. 204, pp. 419-428, 1999.
    連結:
  220. [261] Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, E. F. Schubert, W. Liu, et al., "Comparative study of n-type AlGaN grown on sapphire by using a superlattice layer and a low-temperature AlN interlayer," Journal of Crystal Growth, vol. 299, pp. 59-62, 2007.
    連結:
  221. [262] K. Zhou, J. Liu, S. Zhang, Z. Li, M. Feng, D. Li, et al., "Hillock formation and suppression on c-plane homoepitaxial GaN Layers grown by metalorganic vapor phase epitaxy," Journal of Crystal Growth, vol. 371, pp. 7-10, 2013.
    連結:
  222. [263] B. Kim, D. Moon, K. Joo, S. Oh, Y. K. Lee, Y. Park, et al., "Investigation of leakage current paths in n-GaN by conductive atomic force microscopy," Applied Physics Letters, vol. 104, pp. 102101, 2014.
    連結:
  223. [264] H. Zhang and E. T. Yu, "Demonstration and analysis of reduced reverse-bias leakage current via design of nitride semiconductor heterostructures grown by molecular-beam epitaxy," Journal of Applied Physics, vol. 99, p. 014501, 2006.
    連結:
  224. [265] T. Mattila and R. M. Nieminen, "Ab initio study of oxygen point defects in GaAs, GaN, and AlN," Physical Review B, vol. 54, pp. 16676-16682, 1996.
    連結:
  225. [266] W. A. Groen, J. G. Lierop, and A. Roosen, "Electrical and thermal conductivity of AIN ceramics doped with beryllium and oxygen," Journal of Materials Science Letters, vol. 12, pp. 1224-1226, 1993.
    連結:
  226. [267] G. P. Purja Pun and Y. Mishin, "A molecular dynamics study of self-diffusion in the cores of screw and edge dislocations in aluminum," Acta Materialia, vol. 57, pp. 5531-5542, 2009.
    連結:
  227. [268] D. W. Gotthold, S. P. Guo, R. Birkhahn, B. Albert, D. Florescu, and B. Peres, "Time-dependent degradation of AlGaN/GaN heterostructures grown on silicon carbide," Journal of Electronic Materials, vol. 33, pp. 408-411, 2004.
    連結:
  228. [269] J. Jungwoo and J. A. del Alamo, "Mechanisms for Electrical Degradation of GaN High-Electron Mobility Transistors", Electron Devices Meeting, 2006. IEDM '06. International, pp. 1-4, San Francisco, CA, USA, 2006.
    連結:
  229. [270] D. Marcon, A. Lorenz, J. Derluyn, J. Das, F. Medjdoub, K. Cheng, et al., "GaN-on-Si HEMT stress under high electric field condition," physica status solidi (c), vol. 6, pp. S1024-S1028, 2009.
    連結:
  230. [271] J. Derluyn, S. Boeykens, K. Cheng, R. Vandersmissen, J. Das, W. Ruythooren, et al., "Improvement of AlGaN∕GaN high electron mobility transistor structures by in situ deposition of a Si3N4 surface layer," Journal of Applied Physics, vol. 98, p. 054501, 2005.
    連結:
  231. [273] J. Kuzmik, "Power electronics on InAlN/(In)GaN: Prospect for a record performance," Electron Device Letters, IEEE, vol. 22, pp. 510-512, 2001.
    連結:
  232. [274] F. Medjdoub, M. Alomari, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, et al., "Barrier-Layer Scaling of InAlN/GaN HEMTs", Electron Device Letters, IEEE, vol. 29, pp. 422-425, 2008.
    連結:
  233. [1] S. Taranovich. “Si vs. GaN vs. SiC: Which process and supplier are best for my power design?” Available from: http://www.edn.com/design/power-management/4409627/2/Si-vs--GaN-vs--SiC--Which-process-and-supplier-are-best-for-my-power-design-, March 2013
  234. [3] D. Vye, et al. “The New Power Brokers: High Voltage RF Devices”, Available from: http://www.microwavejournal.com/articles/print/8030-the-new-power-brokers-high-voltage-rf-devices, June 2009
  235. [5] D. E. Meharry, R. J. Lender, C. Kanin, L. L. Gunter, and K. E. Beech, "Multi-Watt Wideband MMICs in GaN and GaAs," Microwave Symposium, 2007. IEEE/MTT-S International, pp. 631-634,2007.
  236. [13] Y. F. Wu, P. M. Chavarkar, M. Moore, P. Parikh, B. P. Keller, and U. K. Mishra, "A 50-W AlGaN/GaN HEMT amplifier", Electron Devices Meeting, 2000. IEDM. Technical Digest. International, pp. 375-376, 2000.
  237. [19] L. Liu, C.-F. Lo, Y. Xi, F. Ren, S. J. Pearton, O. Laboutin, et al., "Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability", Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 31, pp. 011805-6, 01/00/ 2013.
  238. [26] R. K. Willardson and E. R. Weber, SiC Materials and Devices, Elsevier Science, 1998.
  239. [27] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, "III–nitrides: Growth, characterization, and properties", Journal of Applied Physics, vol. 87, pp. 965-1006, 2000.
  240. [28] H. Morkoç, "General Properties of Nitrides", Handbook of Nitride Semiconductors and Devices, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1-129, 2009.
  241. [29] “Wurtzite crystal structure”, Available from http://en.wikipedia.org/w/index.php?title=Wurtzite_crystal_structure&oldid=627312340, 2014
  242. [33] C. Wetzel, T. Suski, J. W. I. Ager, S. Fischer, B. K. Meyer, I. Grzegory, et al., “Strongly localized donor level in oxygen doped gallium nitride” Physic of Semiconductors, 2939, Berlin, Germany, July 1996.
  243. [43] H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, "Zone-boundary phonons in hexagonal and cubic GaN", Physical Review B, vol. 55, pp. 7000-7004, 03/15/ 1997.
  244. [61] C. I. H. Ashby, C. C. Mitchell, J. Han, N. A. Missert, P. P. Provencio, D. M. Follstaedt, et al., "Low-dislocation-density GaN from a single growth on a textured substrate", Applied Physics Letters, vol. 77, pp. 3233-3235, 2000.
  245. [65] B. Gil, Low-Dimensional Nitride Semiconductors, Oxford University Press, 2000.
  246. [71] S. M. Sze, Semiconductor devices: physics and technology, 2nd Editor, Wiley India Pvt. Limited, 2008.
  247. [72] S. M. Sze, High-Speed Semiconductor Devices, John Wiley & Sons, Inc., 1990.
  248. [73] J. M. Golio, E. N. Arnold, and W. B. Beckwith, Microwave MESFETs and HEMTs, London: Artech House, 1991.
  249. [80] H. Kim, V. Tilak, B. M. Green, C. Ho-Young, J. A. Smart, J. R. Shealy, et al., "Degradation characteristics of AlGaN-GaN high electron mobility transistors", Reliability Physics Symposium, 39th Annual. 2001 IEEE International, 2001, pp. 214-218, Orlando, FL, USA, May 2001.
  250. [83] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, et al., "Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives", Device and Materials Reliability, IEEE Transactions on, vol. 8, pp. 332-343, 2008.
  251. [84] D. J. Cheney, E. A. Douglas, L. Liu, C. F. Lo, Y. Y. Xi, B. P. Gila, et al., "Reliability studies of AlGaN/GaN high electron mobility transistors", Semiconductor Science and Technology, vol. 28, p. 074019, 2013.
  252. [91] H. Takayanagi, H. Nakano, and K. Horio, "Analysis of buffer-trapping effects on current reduction and pulsed I-V curves of GaN FETs", Gallium Arsenide and Other Semiconductor Application Symposium, 2005. EGAAS 2005, pp. 149-152, Paris, European, 2005.
  253. [104] O. Toshio and A. Masaharu, "Mechanism of Yellow Luminescence in GaN," Japanese Journal of Applied Physics, vol. 19, p. 2395, 1980.
  254. [106] B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, "Dislocation mediated surface morphology of GaN," Journal of Applied Physics, vol. 85, pp. 6470-6476, 1999.
  255. [112] H. Manasevit, F. Erdmann, and W. Simpson, J. Electrochem. Soc. , vol. 12, p. 156, 1968.
  256. [116] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice,
  257. California: Academic Press, 1999.
  258. [117] W. Kern and J. L. Vossen, Thin Film Processes II, Elsevier Science, 2012.
  259. [120] D. Ehrentraut, E. Meissner, and M. Bockowski, Technology of Gallium Nitride Crystal Growth, Springer, 2010.
  260. [136] E. M. G. o. M. Science “Interface investigations of 2H-AlN grown 6H-SiC substrate. (left) Overview image (right) HRTEM image showing the atomic double-layer structure (dumbbells) of 2H-AlN and 6H-SiC”, Available from: http://www.uni-ulm.de/en/einrichtungen/electron-microscopy-group-of-materials-science/services-for-ulm-university/examples.html, 2012
  261. [140] A. Osinsky, S. Gangopadhyay, J. W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, et al., "Visible-blind GaN Schottky barrier detectors grown on Si(111)," Applied Physics Letters, vol. 72, pp. 551-553, 1998.
  262. [147] H. M. Liaw, R. Venugopal, J. Wan, R. Doyle, P. L. Fejes, and M. R. Melloch, "GaN epilayers grown on 100 mm diameter Si(111) substrates," Solid-State Electronics, vol. 44, pp. 685-690, April 2000.
  263. [159] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "GaN: Processing, defects, and devices," Journal of Applied Physics, vol. 86, pp. 1-78, 1999.
  264. [163] H. Tang, J. B. Webb, J. A. Bardwell, S. Raymond, J. Salzman, and C. Uzan-Saguy, "Properties of carbon-doped GaN," Applied Physics Letters, vol. 78, pp. 757-759, 2001.
  265. [168] C. Chi, H. Yue, Y. Ling, Q. Si, M. Xiaohua, and Z. Jincheng, "Nonlinear characterization of GaN HEMT," Journal of Semiconductors, vol. 31, p. 114004, 2010.
  266. [172] D. C. Look, G. C. Farlow, P. J. Drevinsky, D. F. Bliss, and J. R. Sizelove, "On the nitrogen vacancy in GaN," Applied Physics Letters, vol. 83, pp. 3525-3527, 2003.
  267. [185] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, et al., "Temperature dependence of the fundamental band gap of InN," Journal of Applied Physics, vol. 94, pp. 4457-4460, 2003.
  268. [189] A. V. Rodina, M. Dietrich, A. Göldner, L. Eckey, A. Hoffmann, A. L. Efros, et al., "Free excitons in wurtzite GaN," Physical Review B, vol. 64, p. 115204, August 2001.
  269. [200] S. Einfeldt, V. Kirchner, H. Heinke, M. Dießelberg, S. Figge, K. Vogeler, et al., "Strain relaxation in AlGaN under tensile plane stress," Journal of Applied Physics, vol. 88, pp. 7029-7036, 2000.
  270. [218] Q. Yan, P. Rinke, A. Janotti, M. Scheffler, and C. G. Van de Walle, "Effects of strain on the band structure of group-III nitrides," Physical Review B, vol. 90, p. 125118, 09/09/ 2014.
  271. [220] M. A. Moram and M. E. Vickers, "X-ray diffraction of III-nitrides," Reports on Progress in Physics, vol. 72, p. 036502, 2009.
  272. [222] R. B. Schwarz, K. Khachaturyan, and E. R. Weber, "Elastic moduli of gallium nitride," Applied Physics Letters, vol. 70, pp. 1122-1124, 1997.
  273. [245] S. C. Binari, H. B. Dietrich, G. Kelner, L. B. Rowland, K. Doverspike, and D. K. Wickenden, "H, He, and N implant isolation of n-type GaN," Journal of Applied Physics, vol. 78, pp. 3008-3011, 1995.
  274. [246] F. Zhifang, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, "Very low resistance multilayer Ohmic contact to n-GaN," Applied Physics Letters, vol. 68, pp. 1672-1674, 1996.
  275. [272] J. L. Jimenez and U. Chowdhury, "X-Band GaN FET reliability", Reliability Physics Symposium, IRPS 2008. IEEE International, pp. 429-435, Phoenix, AZ, USA, 2008.