透過您的圖書館登入
IP:3.144.93.73
  • 學位論文

設計和合成比例感測器和多重刺激響應螢光分子開關具有新穎性的BODIPY /四苯乙烯(TPE)官能化[2]輪烷可用作調控聚集誘導發光行為

Design and Synthesis of Ratiometric Sensors and Multi-Stimuli Responsive Fluorescence Molecular Switches with Novel BODIPY/Tetraphenylethene (TPE) Functionalized [2]Rotaxane and a Controllable Aggregation Induced Emission Behavior

指導教授 : 林宏洲

摘要


本論文的目的是設計和建構含對稱塞子之新穎型螢光分子開關具有可切換機械聯鎖結構,並研究其在酸-鹼刺激控制下,分子穿梭過程中,可調控高對比度螢光和陰離子客體物種的選擇性檢測。在本論文介紹中,我們描述了早期簡單合成方式來建構機械互鎖分子(MIMs),例如rotaxanes和catenanes以及幾種化學感測機制和聚集誘導發光 (AIE)。此外,還介紹了新型模板方法建構MIM和在不同的刺激控制下,螢光MIM的分子穿梭過程。 實際上,在酸-鹼的刺激可以驅動分子穿梭在兩站之間,伴隨著改變AIE活性機械互鎖分子的AIE行為。 相當地,提出了這些系統中的化學感測機制。 同時,我們也在這論文中開發了含羅丹明衍生物利用簡易比率順序檢測銅和焦磷酸鹽。 在第二章中,首先利用CuAAC點擊反應合成一種新型多功能機械互鎖的開關[2]rotaxane R4,其包含兩個分子站和rotaxane臂的封端含硼-二?咯亞甲基(BODIPY)螢光團及其衍生物。利用外部化學刺激(酸/鹼)證明了大環分子的穿梭運動過程在二芐基銨與三唑?辨識位點之間和R4的距離與光誘導電子轉移過程是有依存性的。有趣的是,由酸-鹼分子開關策略R4的可逆自組裝過程是被認可。值得注意的是,在H2PO4 受體和氫鍵予體下,兩個對稱的三唑?基團作為分子站。 [2]rotaxane R4和線性R2表現出優異的光學響應並對H2PO4-離子有的高選擇性。為了進一步探討,機械互鎖機器(MIMs)具體運動和客體/主體相互作用機制也通過量子力學計算。 線性R2被證明能夠成功地檢測RAW 264.7細胞中的H2PO4-離子。 在第三章,第一個利用CuAAC點擊化學合成一個新穎近紅外螢光開關[2]rotaxane NIR4,其組成包含兩個不同的分子站和rotaxane臂的封端含硼-二?咯亞甲基(BODIPY)螢光團及其衍生物。 分子穿梭運動可以通過外部化學刺激(酸/鹼)響應,來了解 [2]rotaxane NIR4的距離與螢光信號轉移對光誘導電子轉移過程的依存性。透過合成設計高水平複雜性的結構[2]rotaxane NIR4是更具備高的選擇性陰離子感測。明顯地,分子設計關鍵在於[2]rotaxane NIR4之柔性臂三唑?部分可作為分子站與氫鍵予體,其對於互補陰離子物種擁有獨特的選擇性和敏感性。 進一步探討,[2]rotaxane NIR4特定機械分子運動,是通過量子力學計算NIR2和機械互鎖分子(MIMs)主/客體之相互作用。重要的是NIR主體和[2]rotaxane NIR4可以應用於在亞細胞體內的H2PO4-清楚成像和分佈。 在第四章中,第一個通過點擊化學合成了一種新穎的AIE-活性開關 [2]rotaxane TR2,其包含兩個不同的分子站和以封端的輪烷臂含AIE-活性TPE螢光團及其衍生物。利用NMR光譜來監控,溶液中的外部酸-鹼刺激之變化,在兩個分子站之間大環化合物的穿梭行為。 他們的AIE螢光行為變化的研究表明,在這些類似的rotaxane,可由外部酸-鹼刺激大環化合物分子運動。設計具有高水平的結構複雜性[2]rotaxane TR2含陰離子模板化結構是更具挑戰性的任務。 顯然,分子設計關鍵在柔性臂三唑?部分,其對於互補陰離子物種擁有獨特的選擇性和敏感性。通過量子力學計算,進一步探討機械互鎖分子(MIM)的特定機械分子運動和主/客體之間相互作用。重要的是,研究[2]rotaxane TR1,TR2和TR3的AIE-活性行為是有潛力應用在生物成像,並且特別地[2]rotaxane是可用於在亞細胞等級的H2PO4-之體內成像。 在第五章中,合成具有兒茶酚和醚官能團的兩種羅丹明?衍生物Rh1和Rh2,並用於在CH3CN-H2O (v/v = 9:1, 55 mM Tris–HCl, pH 7.4)半水溶液中的Cu(II)和焦磷酸(PPi)離子的連續比色檢測。值得注意的是,第一個實例Rh1和Rh2含羅丹明探測基團是用於Cu2+離子和PPi陰離子的連續比色檢測。基於Rh1和Rh2到Cu2+離子的顯著比色響應(從無色到粉紅色),檢測極限最低分別估計1.22×10-8和8.0×10-7 M,這表明設計的探測基團對Cu2+離子是容易檢測到。此外,在連續添加PPi離子到Rh1-Cu2+和Rh2-Cu2+錯合物後,通過PPi與Cu2+離子的重新配位,其被改變並恢復到其原本的Rh1和Rh2,可從粉紅色到無色。因此,DFT計算提供了對羅丹明衍生物及其銅錯合物的HOMO-LUMO結構計算。此外, Cu2+離子的固態帶狀比色檢測是可作為實際應用。 本論文結論,係研究設計新型螢光機械互鎖分子作為分子開關。令人感興趣的是,通過添加酸-鹼來研究AIE行為,顯示大分子組分的分子運動可以誘導改變AIE-活性機械互鎖分子的聚集狀態。討論了磷酸二氫(H2PO4-)的顯著刺激反應。此外,詳細介紹了羅丹明衍生物對銅和焦磷酸鹽的比例連續檢測結果。 本論文的目的是設計和建構含對稱塞子之新穎型螢光分子開關具有可切換機械聯鎖結構,並研究其在酸-鹼刺激控制下,分子穿梭過程中,可調控高對比度螢光和陰離子客體物種的選擇性檢測。在本論文介紹中,我們描述了早期簡單合成方式來建構機械互鎖分子(MIMs),例如rotaxanes和catenanes以及幾種化學感測機制和聚集誘導發光 (AIE)。此外,還介紹了新型模板方法建構MIM和在不同的刺激控制下,螢光MIM的分子穿梭過程。 實際上,在酸-鹼的刺激可以驅動分子穿梭在兩站之間,伴隨著改變AIE活性機械互鎖分子的AIE行為。 相當地,提出了這些系統中的化學感測機制。 同時,我們也在這論文中開發了含羅丹明衍生物利用簡易比率順序檢測銅和焦磷酸鹽。 在第二章中,首先利用CuAAC點擊反應合成一種新型多功能機械互鎖的開關[2]rotaxane R4,其包含兩個分子站和rotaxane臂的封端含硼-二?咯亞甲基(BODIPY)螢光團及其衍生物。利用外部化學刺激(酸/鹼)證明了大環分子的穿梭運動過程在二芐基銨與三唑?辨識位點之間和R4的距離與光誘導電子轉移過程是有依存性的。有趣的是,由酸-鹼分子開關策略R4的可逆自組裝過程是被認可。值得注意的是,在H2PO4 受體和氫鍵予體下,兩個對稱的三唑?基團作為分子站。 [2]rotaxane R4和線性R2表現出優異的光學響應並對H2PO4-離子有的高選擇性。為了進一步探討,機械互鎖機器(MIMs)具體運動和客體/主體相互作用機制也通過量子力學計算。 線性R2被證明能夠成功地檢測RAW 264.7細胞中的H2PO4-離子。 在第三章,第一個利用CuAAC點擊化學合成一個新穎近紅外螢光開關[2]rotaxane NIR4,其組成包含兩個不同的分子站和rotaxane臂的封端含硼-二?咯亞甲基(BODIPY)螢光團及其衍生物。 分子穿梭運動可以通過外部化學刺激(酸/鹼)響應,來了解 [2]rotaxane NIR4的距離與螢光信號轉移對光誘導電子轉移過程的依存性。透過合成設計高水平複雜性的結構[2]rotaxane NIR4是更具備高的選擇性陰離子感測。明顯地,分子設計關鍵在於[2]rotaxane NIR4之柔性臂三唑?部分可作為分子站與氫鍵予體,其對於互補陰離子物種擁有獨特的選擇性和敏感性。 進一步探討,[2]rotaxane NIR4特定機械分子運動,是通過量子力學計算NIR2和機械互鎖分子(MIMs)主/客體之相互作用。重要的是NIR主體和[2]rotaxane NIR4可以應用於在亞細胞體內的H2PO4-清楚成像和分佈。 在第四章中,第一個通過點擊化學合成了一種新穎的AIE-活性開關 [2]rotaxane TR2,其包含兩個不同的分子站和以封端的輪烷臂含AIE-活性TPE螢光團及其衍生物。利用NMR光譜來監控,溶液中的外部酸-鹼刺激之變化,在兩個分子站之間大環化合物的穿梭行為。 他們的AIE螢光行為變化的研究表明,在這些類似的rotaxane,可由外部酸-鹼刺激大環化合物分子運動。設計具有高水平的結構複雜性[2]rotaxane TR2含陰離子模板化結構是更具挑戰性的任務。 顯然,分子設計關鍵在柔性臂三唑?部分,其對於互補陰離子物種擁有獨特的選擇性和敏感性。通過量子力學計算,進一步探討機械互鎖分子(MIM)的特定機械分子運動和主/客體之間相互作用。重要的是,研究[2]rotaxane TR1,TR2和TR3的AIE-活性行為是有潛力應用在生物成像,並且特別地[2]rotaxane是可用於在亞細胞等級的H2PO4-之體內成像。 在第五章中,合成具有兒茶酚和醚官能團的兩種羅丹明?衍生物Rh1和Rh2,並用於在CH3CN-H2O (v/v = 9:1, 55 mM Tris–HCl, pH 7.4)半水溶液中的Cu(II)和焦磷酸(PPi)離子的連續比色檢測。值得注意的是,第一個實例Rh1和Rh2含羅丹明探測基團是用於Cu2+離子和PPi陰離子的連續比色檢測。基於Rh1和Rh2到Cu2+離子的顯著比色響應(從無色到粉紅色),檢測極限最低分別估計1.22×10-8和8.0×10-7 M,這表明設計的探測基團對Cu2+離子是容易檢測到。此外,在連續添加PPi離子到Rh1-Cu2+和Rh2-Cu2+錯合物後,通過PPi與Cu2+離子的重新配位,其被改變並恢復到其原本的Rh1和Rh2,可從粉紅色到無色。因此,DFT計算提供了對羅丹明衍生物及其銅錯合物的HOMO-LUMO結構計算。此外, Cu2+離子的固態帶狀比色檢測是可作為實際應用。 本論文結論,係研究設計新型螢光機械互鎖分子作為分子開關。令人感興趣的是,通過添加酸-鹼來研究AIE行為,顯示大分子組分的分子運動可以誘導改變AIE-活性機械互鎖分子的聚集狀態。討論了磷酸二氫(H2PO4-)的顯著刺激反應。此外,詳細介紹了羅丹明衍生物對銅和焦磷酸鹽的比例連續檢測結果。

關鍵字

BODIPY Rotaxane

並列摘要


The pivotal objective of this dissertation is to design and construct novel fluorescent switchable mechanically interlocked molecular architectures with symmetric stopper and to study their molecular shuttling process under acid-base stimuli control along with their controllable high contrast fluorescence and impressively selective detection of anionic guest species. In the introduction of this doctoral thesis we have described brief early synthetic attempts to create mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes as well as several chemosensing mechanism and aggregation induced emission (AIE). Moreover novel templating methodologies to build MIMs and some latest examples of fluorescence MIMs based molecular shuttles under different control stimuli were also introduced. Indeed, acid-based stimuli can drive the molecular shuttling between the two stations accompanied by changing the AIE behavior of AIE-active mechanically interlocked molecule investigated. Fairly, underplayed chemo sensing mechanisms in these systems were presented. Meanwhile, we have developed facile ratiometric sequential detection of copper and pyrophosphate based on rhodamine appended derivatives in this doctoral thesis as well. In chapter two, a novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid–base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4– receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4– ion. The specific motion and guest–host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4– in RAW 264.7 cells successfully. In chapter three, a novel near IR fluorescent switchable [2]rotaxane NIR4 composed of two different molecular stations and rotaxane arms terminated with near IR boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click chemistry. The molecular shuttling motion could be addressed by the fluorescence signal transduction via distance dependent photo-induced electron transfer process of [2]rotaxane NIR4 triggered by external chemical stimuli (acid/base). The construction and efficient synthesis of [2]rotaxane NIR4 with high level of structural complexity designed always more challenging task of selective anion sensing. Conspicuously, the key to design involved encoding the flexible arms of [2]rotaxane NIR4 triazolium moiety acted as molecular stations and H-bonded donors, which exhibits impressive selectivity and sensitivity toward complementary anionic gust species. The specific mechanical molecular motion of [2]rotaxane NIR4, host-guest interactions of NIR2 and mechanically interlocked molecules (MIMs) were also further explored by quantum mechanical calculations. Importantly, the host of NIR2 and [2]rotaxane NIR4 could be applied for the vivo imaging and clarify the distribution of H2PO4- at subcellular levels. In chapter four, a novel AIE-active switchable [2]rotaxane TR2 incorporating two different molecular stations and rotaxane arms terminated with AIE-active TPE fluorophores and its derivatives were synthesized for the first time by click chemistry. The shuttling behavior of macrocycle component between the two molecular stations can be driven by external acid-base stimuli in solution, accompanied by NMR spectral changes. Investigation of their AIE fluorescence behavior changes showed that these analogous rotaxane are controlled by the molecular motion of the macrocycle component in the presence of external acid-base stimuli. The anion-templated construction of [2]rotaxane TR2 with high level of structural complexity designed always more challenging task. Evidently, the key to design involved encoding the flexible arms of both triazolium motif, is described which exhibit impressive selectivity and sensitivity toward complementary anionic gust species. The specific mechanical molecular motion and host-guest interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. Importantly, the AIE- active behaviors of [2]rotaxanes TR1, TR2 and TR3 were further investigated to study their potential bio-imaging application and specifically [2]rotaxane TR2 could be applied in vivo imaging with H2PO4- at subcellular levels. In chapter five, two rhodamine hydrazine derivatives Rh1 and Rh2 with catechol and ether functionalities have been synthesized and utilized towards sequential colorimetric detections of Cu(II) and pyrophosphate (PPi) ions in CH3CN–H2O (v/v = 9 : 1, 5 mM Tris–HCl, pH 7.4) semi-aqueous medium. Notably, Rh1 and Rh2 are the first example of colorimetric rhodamine-based probes for the sequential detections of Cu2+ ion and PPi anion. Based on the significant colorimetric responses (from colorless to pink) of Rh1 and Rh2 to Cu2+ ions, the detection limits were estimated as low as 1.22 × 10?8 M and 8.0 × 10?7 M, respectively, which signified the utilities of designed probes towards facile detections of Cu2+ ions. Furthermore, upon the successive addition of PPi ion to Rh1–Cu2+ and Rh2–Cu2+complexes, it has been altered and restored to its origin of Rh1 and Rh2 via re-coordination of PPi to Cu2+ ion, which was confirmed by color changes from pink to colorless. Moreover, computational DFT calculations provided more insights into HOMO–LUMO structures of rhodamine derivatives and their copper complexes. Additionally, the solid state strip-based colorimetric detections of Cu2+ ion were supplemented as a real time application. Thus in conclusion, novel fluorescence mechanically interlocked molecules designed to act as molecular switches have proceeded apace. Delightfully, the molecular shuttling to achieve by the addition of acid-base and studied on AIE behavior indicate that the molecular motion of macrocycle component could induce change the aggregation state of the AIE-active mechanically interlocked molecule. The remarkable stimulated responses towards dihydrogen phosphate (H2PO4-) were discussed. Furthermore, sequential detection of copper and pyrophosphate via ratiometric sensor based on rhodamine derivatives were presented in detail.

參考文獻


References
(1) Tang, K.-T.; Toennies, J. P. Johannes Diderik van der Waals. Angew. Chem. Int. Ed. 2010, 49 (50), 9574-9579.
(2) Martin, T.W.; and Zygmunt, S. Nat. Struct. Biol. 1999, 6, 403 – 406.
(3) Gastone, G.; Paola. G. J. Am. Chem. Soc. 1920, 42, 1419?1433.
(4) Schroeder, H. E.; Pedersen, C. J. Pure Appl. Chem. 1988, 60, 445.

延伸閱讀