Title

積層製造仿生元件之模擬與結構最佳化

Translated Titles

Modeling and Structural Optimization of Additive-manufactured Biomimetic Devices

Authors

阿留娜

Key Words

植體材料 ; 植體設計 ; dental implants ; osseointegration ; healing chamber ; structural optimization ; modeling

PublicationName

交通大學材料科學與工程系所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

鄒年棣

Content Language

英文

Chinese Abstract

牙釘植體是一種仿生醫療器具,除了被用來修復因缺牙而導致牙齒功能喪失之外,亦被廣泛的運用於骨折的治療。為了使植體能擁有長時間的療效,必須將其緊實的固定在骨頭中以抵擋外力。目前已有許多有限元素法研究指出,植體表面與周圍骨頭間接觸區域的設計可影響並刺激骨生長,其中,兩關鍵要素:細胞附著情形及生物力學刺激的影響,可以預防骨吸收與並進而增加骨生長。故能刺激周圍骨生長的植體設計即為本論文所提出的重要主題之一。 因為植體外觀的設計可以使牙釘植體獲得較高的穩定性,因此,我們模擬了許多不同的牙釘植體以進一步評估可用來固定螺釘的最佳形狀。在本論文中,植體的設計主要由四個參數所控制,包含:牙釘植體及螺紋兩者分別的高度和半徑。因此,我們透過ANSYS有限元素分析軟體來建構自動化的3-D模型,進而模擬其力學行為。此外,為了進一步探討不同植體設計下的骨生長情形,我們分析牙釘最大彈性應力、應變分佈和周圍骨的位移,並進一步使用Wolff’s Law將周圍骨頭的健康狀態分類為無用、自適應、可修復及超載四個區域,來分析植體周圍骨頭的生物力學行為。為了方便分析,我們利用MATLAB軟體來建置圖形化介面繪製出3-D反應曲面圖以比較不同牙釘植體設計對於骨整合的影響。   由於不同外形的牙釘植體會影響到周圍骨頭的應力狀態,因此,我們進一步分析一種由工研院新研發的T形牙釘植體,此種新設計的牙釘植體相關資訊非常稀少,因此我們利用一種計算模型,概念源自Wolff’s Law對於骨頭重整的定義,進一步將其用來設計T形牙釘植體的復原腔室。目前的研究結果亦可擴展到其他的醫療器具。不僅如此,T形牙釘模擬的結果也與International Team for Implantology (ITI)的牙釘植體復原腔室做比較。   因此,本論文包含了兩個對仿生醫學裝置的主要研究: (1)骨頭重整的數值化計算模型和 (2)牙釘植體的外型最佳化設計。其結果可證明何種仿生醫療器具可擁有較佳的骨長入情形且有效的降低應力遮蔽效應,進而改善植體長期植入的穩定性。

English Abstract

Dental implants are biomimetic medical devices applied to recover the function caused by the loss of one or several teeth. They have been also widely used for fractural bone treatments. To reach successful function for the long time, the dental implants must be well fixed into the bone to be able to resist the external forces. Theoretical finite element studies have demonstrated that a contact region between the implant’s surface and surrounding bone can be designed to induce optimal biomechanical stimulation for bone formation. Cell attachment and biomechanical stimulation are key factors to prevent bone resorption and afterward to gain bone. The design of the bones surrounding the implant’s surface that stimulates bone growth is one of the main subjects presented in this thesis. The main factor to obtain high anchorage stability is the implant’s design. Thus, different dental implant models were created for the further evaluation for the best shape to fix the screw. In this thesis, the implant design includes four optimized parameters, such as: length and width of the implant body with different shapes of the thread. Therefore, the finite element analysis (FEA) software ANSYS 15.0 was used to automatically build three-dimensional (3-D) geometries to simulate their mechanical behavior. Besides, Wolff’s Law was used to analyze biomechanical behavior at the surrounding bone for further investigation of the bone remodeling due to different implant designs. Results were collected as a volume at disuse, adaptive, repair and overload regions, total volume of the bone; maximum elastic stress, strain distribution and the displacement in surrounding bones. Graphic user interface was created by MATLAB software to build 3-D surface contour and to show how different implant designs influence the osseointegration. Stress conditions around an implant can also be improved by selecting an appropriate implant’s shape. Therefore, a new shape was taken to analyze its biomechanical behavior, such as T-shape dental implant. Also, information about this shape of the dental implant is insufficient. A numerical method of the bone remodeling process at the implant’s surrounding surface was applied to the T-shape dental implant. Theoretical methods of the bone remodeling were described. The concept of this numerical model was from the definition of bone remodeling according to Wolff’s Law. Next, this method was applied to design healing chamber of T-shape dental implant. The result of the current work can be extended to other medical devices. Moreover, a numerical model for T-shape implant design was taken into account and compared with the International Team for Implantology’s (ITI) dental implant’s healing chamber. Thus, the present thesis contains two main topics of importance for biomimetic medical devices: i) numerical model based on the bone remodeling and ii) shape optimization of dental implants. This can demonstrate which biomimetic device can allow more bone ingrowth, efficiently reduce stress shielding effect, and therefore may improve long-term implant stability.

Topic Category 工學院 > 材料科學與工程系所
工程學 > 工程學總論
Reference
  1. [2] J.-C. Park, J.-W. Lee, S.-M. Kim, J.-H. Lee, Implant Stability - Measuring Devices and Randomized Clinical Trial for ISQ Value Change Pattern Measured from Two Different Directions by Magnetic RFA, Implant Dent. - A Rapidly Evol. Pract. (2011).
    連結:
  2. [3] E.P. Holmgren, R.J. Seckinger, L.M. Kilgren, F. Mante, Evaluating parameters of osseointegrated dental implants using finite element analysis--a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction., J. Oral Implantol. 24 (1998) 80–88. doi:10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2.
    連結:
  3. [4] M. Sevimay, F. Turhan, Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown, J. Prosthet. …. (2005) 227–234.
    連結:
  4. [5] M.M. Shalabi, a. Gortemaker, M. a. V. Hof, J. a. Jansen, N.H.J. Creugers, Implant Surface Roughness and Bone Healing: a Systematic Review, J. Dent. Res. 85 (2006) 496–500. doi:10.1177/154405910608500603.
    連結:
  5. [6] L. Chen, H. He, Y. Li, T. Li, X. Guo, R. Wang, Finite element analysis of stress at implant–bone interface of dental implants with different structures, Trans. Nonferrous Met. Soc. China. 21 (2011) 1602–1610. doi:10.1016/S1003-6326(11)60903-5.
    連結:
  6. [7] S. Hansson, A conical implant-abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone. An axisymmetric finite element analysis., Clin. Oral Implants Res. 14 (2003) 286–93. doi:10.1034/j.1600-0501.2003.140306.x.
    連結:
  7. [8] J.T. Steigenga, K.F. al-Shammari, F.H. Nociti, C.E. Misch, H.L. Wang, Dental implant design and its relationship to long-term implant success, Implant Dent. 12 (2003) 306–317. doi:10.1097/01.ID.0000091140.76130.A1.
    連結:
  8. [9] M.I. El-Anwar, M.M. El-Zawahry, A three dimensional finite element study on dental implant design, J. Genet. Eng. Biotechnol. 9 (2011) 77–82. doi:10.1016/j.jgeb.2011.05.007.
    連結:
  9. [10] J.-C. Park, J.-H.J.-W. Lee, S.-M. Kim, J.-H.J.-W. Lee, F. Javed, H.B. Ahmed, et al., Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation, Interv. Med. Appl. Sci. 5 (2013) 162–167. doi:10.1556/IMAS.5.2013.4.3.
    連結:
  10. [11] I. Abrahamsson, M. Welander, E. Linder, T. Berglundh, Healing at Implants Placed in an Alveolar Ridge with a Sloped Configuration: An Experimental Study in Dogs, Clin. Implant Dent. Relat. Res. 16 (2014) 62–69. doi:10.1111/j.1708-8208.2012.00460.x.
    連結:
  11. [12] F. Javed, H.B. Ahmed, R. Crespi, G.E. Romanos, Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation, Interv. Med. Appl. Sci. 5 (2013) 162–167. doi:10.1556/IMAS.5.2013.4.3.
    連結:
  12. [13] H.-Y. Chou, J.J. Jagodnik, S. Müftü, Predictions of bone remodeling around dental implant systems., J. Biomech. 41 (2008) 1365–73. doi:10.1016/j.jbiomech.2008.01.032.
    連結:
  13. [14] C. Wang, L. Wang, X. Liu, Y. Fan, Numerical simulation of the remodelling process of trabecular architecture around dental implants, Comput. Methods Biomech. Biomed. Engin. (2012) 1–10. doi:10.1080/10255842.2012.681646.
    連結:
  14. [17] C.-L. Chang, C.-S. Chen, C.-H. Huang, M.-L. Hsu, Finite element analysis of the dental implant using a topology optimization method, Med. Eng. Phys. 34 (2012) 999–1008. doi:10.1016/j.medengphy.2012.06.004.
    連結:
  15. [18] P. Ausiello, P. Franciosa, M. Martorelli, D.C. Watts, Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method, Dent. Mater. 28 (2012) 919–927. doi:10.1016/j.dental.2012.04.035.
    連結:
  16. [19] V. Demenko, I. Linetskiy, K. Nesvit, H. Hubalkova, V. Nesvit, a Shevchenko, Importance of diameter-to-length ratio in selecting dental implants: a methodological finite element study., Comput. Methods Biomech. Biomed. Engin. 17 (2012) 443–449. doi:10.1080/10255842.2012.688110.
    連結:
  17. [20] L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dent. Mater. 23 (2007) 844–854. doi:10.1016/j.dental.2006.06.025.
    連結:
  18. [21] V. Sollazzo, F. Pezzetti, A. Scarano, A. Piattelli, C.A. Bignozzi, L. Massari, et al., Zirconium oxide coating improves implant osseointegration in vivo, Dent. Mater. 24 (2008) 357–361. doi:10.1016/j.dental.2007.06.003.
    連結:
  19. [22] P.G. Coelho, R. Jimbo, N. Tovar, E.A. Bonfante, Osseointegration: Hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales, Dent. Mater. 31 (2015) 37–52. doi:10.1016/j.dental.2014.10.007.
    連結:
  20. [23] G. Pagni, A. Rebaudi, K. Lau, G. Pagni, H. Wang, The effect of thread pattern upon implant osseointegration : Review The effect of thread pattern upon implant osseointegration, (2009). doi:10.1111/j.1600-0501.2009.01800.x.
    連結:
  21. [25] R.S. Boggan, J.T. Strong, C.E. Misch, M.W. Bidez, Influence of hex geometry and prosthetic table width on static and fatigue strength of dental implants, J. Prosthet. Dent. 82 (1999) 436–440. doi:10.1016/S0022-3913(99)70030-2.
    連結:
  22. [26] O. Rehabilitation, M.M. Engineering, M.M. Engineering, M.M. Engineering, S. Mary, H. We, et al., Evaluation of design parameters of osseointegrated dental implants using finite element analysis, (2002).
    連結:
  23. [27] H. Chun, S. Cheong, J. Han, S. Heo, J. Chung, I. Rhyu, et al., Evaluation of design parameters of osseointegrated dental implants using finite element analysis, J. Oral Rehabil. 29 (2002) 565–574. doi:10.1111/j.1365-2842.2006.01653.x.
    連結:
  24. [29] P.G. Coelho, R. Jimbo, Osseointegration of metallic devices: Current trends based on implant hardware design, Arch. Biochem. Biophys. 561 (2014) 99–108. doi:10.1016/j.abb.2014.06.033.
    連結:
  25. [30] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–1928. doi:10.1007/s11665-014-0958-z.
    連結:
  26. [32] J. Kwon, H. Naito, T. Matsumoto, M. Tanaka, Simulation model of trabecular bone remodeling considering effects of osteocyte apoptosis and targeted remodeling, J. Biomech. Sci. Eng. 5 (2010) 539–551. doi:10.1299/jbse.5.539.
    連結:
  27. [33] Y.-H. Ahn, W.-M. Chen, K.-Y. Lee, K.-W. Park, S.-J. Lee, Comparison of the load-sharing characteristics between pedicle-based dynamic and rigid rod devices., Biomed. Mater. 3 (2008) 44101. doi:10.1088/1748-6041/3/4/044101.
    連結:
  28. [34] J. Kwon, H. Naito, T. Matsumoto, M. Tanaka, Computational study on trabecular bone remodeling in human femur under reduced weight-bearing conditions, J. Biomech. Sci. Eng. 5 (2010) 552–564. doi:10.1299/jbse.5.552.
    連結:
  29. [36] H.M. Frost, Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: the remodeling problem., Anat. Rec. 226 (1990) 414–422. doi:10.1002/ar.1092260402.
    連結:
  30. [38] L.E. Lanyon, C.T. Rubin, Static vs dynamic loads as an influence on bone remodelling, J. Biomech. 17 (1984) 897–905. doi:10.1016/0021-9290(84)90003-4.
    連結:
  31. [40] B.G. Beutel, N.R. Danna, R. Granato, E. a. Bonfante, C. Marin, N. Tovar, et al., Implant design and its effects on osseointegration over time within cortical and trabecular bone, J. Biomed. Mater. Res. Part B Appl. Biomater. (2015) n/a-n/a. doi:10.1002/jbm.b.33463.
    連結:
  32. [41] C. Marin, R. Granato, M. Suzuki, J.N. Gil, M.N. Janal, P.G. Coelho, Histomorphologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times: A study in dogs, Clin. Oral Implants Res. 21 (2010) 577–583. doi:10.1111/j.1600-0501.2009.01853.x.
    連結:
  33. [42] F.E. Campos, J.B. Gomes, C. Marin, H.S. Teixeira, M. Suzuki, L. Witek, et al., Effect of drilling dimension on implant placement torque and early osseointegration stages: An experimental study in dogs, J. Oral Maxillofac. Surg. 70 (2012). doi:10.1016/j.joms.2011.08.006.
    連結:
  34. [43] T. Berglundh, I. Abrahamsson, N.P. Lang, J. Lindhe, De novo alveolar bone formation adjacent to endosseous implants, Clin. Oral Implants Res. 14 (2003) 251–262. doi:10.1034/j.1600-0501.2003.00972.x.
    連結:
  35. [44] P.I. Brånemark, R. Adell, U. Breine, B.O. Hansson, J. Lindström, a Ohlsson, Intra-osseous anchorage of dental prostheses. I. Experimental studies., Scand. J. Plast. Reconstr. Surg. 3 (1969) 81–100. doi:10.1097/00006534-197107000-00067.
    連結:
  36. [45] B.G. Beutel, N.R. Danna, R. Granato, E. a. Bonfante, C. Marin, N. Tovar, et al., Implant design and its effects on osseointegration over time within cortical and trabecular bone, J. Biomed. Mater. Res. Part B Appl. Biomater. (2015) n/a-n/a. doi:10.1002/jbm.b.33463.
    連結:
  37. [46] E.F. da Silva, E.P. Pellizzer, J.V. Quinelli Mazaro, I.R. Garcia Júnior, Influence of the connector and implant design on the implant-tooth-connected prostheses, Clin. Implant Dent. Relat. Res. 12 (2010) 254–262. doi:10.1111/j.1708-8208.2009.00161.x.
    連結:
  38. [47] J. Yang, H.J. Xiang, A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone, J. Biomech. 40 (2007) 2377–2385. doi:10.1016/j.jbiomech.2006.11.019.
    連結:
  39. [48] K. ichi Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, T. Adachi, Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff’s law, J. Biomech. 42 (2009) 1088–1094. doi:10.1016/j.jbiomech.2009.02.030.
    連結:
  40. [50] C.C. Lee, S.C. Lin, M.J. Kang, S.W. Wu, P.Y. Fu, Effects of implant threads on the contact area and stress distribution of marginal bone, J. Dent. Sci. 5 (2010) 156–165. doi:10.1016/S1991-7902(10)60023-2.
    連結:
  41. [51] J.P. Li, J.R. De Wijn, C.A. Van Blitterswijk, K. De Groot, Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment, Biomaterials. 27 (2006) 1223–1235. doi:10.1016/j.biomaterials.2005.08.033.
    連結:
  42. [52] O. Eraslan, O. Inan, The effect of thread design on stress distribution in a solid screw implant: A 3D finite element analysis, Clin. Oral Investig. 14 (2010) 411–416. doi:10.1007/s00784-009-0305-1.
    連結:
  43. [53] T. Li, L. Kong, Y. Wang, K. Hu, L. Song, B. Liu, et al., Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis, Int. J. Oral Maxillofac. Surg. 38 (2009) 1077–1083. doi:10.1016/j.ijom.2009.07.001.
    連結:
  44. [1] L. a Weinberg, The biomechanics of force distribution in implant-supported prostheses., Int. J. Oral Maxillofac. Implants. 8 (1993) 19–31.
  45. [15] J. Roos, L. Sennerby, U. Lekholm, T. Jemt, K. Grondahl, T. Albrektsson, A qualitative and quantitative method for evaluating implant success: a 5-year retrospective analysis of the Branemark implant, Int. J. Oral Maxillofac. Implant. 12 (1997) 504–514. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9274079.
  46. [16] A. Schroeder, O. Pohler, F. Sutter, [Tissue reaction to an implant of a titanium hollow cylinder with a titanium surface spray layer]., Schweizerische Monatsschrift Für Zahnheilkd. = Rev. Mens. Suisse D’odonto-Stomatologie / SSO. 86 (1976) 713–27. http://www.ncbi.nlm.nih.gov/pubmed/822512.
  47. [24] Dental Implant Types, (n.d.). http://www.1888implant.com/mobile/dental_implants.html.
  48. [28] 11: Scientific Rationale for Dental Implant Design
  49. [31] H.M. Frost, A 2003 update of bone physiology and Wolff s law for clinicians, Angle Orthod. 74 (2004) 3–15. doi:10.1043/0003-3219(2004)074<0003:AUOBPA>2.0.CO;2.
  50. [35] E.G. García, Lehrstuhl Computation in Engineering Double Experimental Procedure for Model-Specific Finite Element Analysis of the Human Femur and Trabecular Bone, (2013).
  51. [37] H.M. Frost, Wolff’s Law and bone’s structural adaptations to mechanical usage: an overview for clinicians., Angle Orthod. 64 (1994) 175–188. doi:10.1043/0003-3219(1994)064<0175:WLABSA>2.0.CO;2.
  52. [39] W.S. Jee, Principles in bone physiology., J. Musculoskelet. Neuronal Interact. 1 (2000) 11–13.
  53. [49] E. Tanaka, S. Yamamoto, A mathematical model of bone remodeling under overload and its application to evaluation of bone resorption around dental implants, Acta Bioeng. Biomech. 1 (1999).