Translated Titles




Key Words

雙排樁 ; 鋼軌樁 ; 開挖 ; 地盤變位 ; Double-rail pile wall ; Soldier pile ; Excavation ; Ground deformation



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

摘 要 國內外的開挖工程,大都採用連續壁作為擋土設施,隨著挖土作業的逐漸進行,圍苓及水平支撐逐層施作,以達到擋土的目的。但是如果進行大面積的開挖,則水平支撐的架設顯得無效率,而且挖土作業及後續的地下結構物的構築也不方便。因此工程界逐漸於較堅硬的土層中發展出雙排樁無支撐開挖工法。 本研究利用離心模型試驗,藉由模擬開挖過程,探討於砂土層中以自承式單排或雙排鋼軌樁擋土系統作為擋土設施時,不同的開挖與貫入深度比對擋土系統及鄰近地盤之影響。 研究結果顯示,砂土層中以自承式單排或雙排鋼軌樁擋土系統作為擋土設施時,開挖所引致之地表沉陷槽皆屬於三角槽型,影響範圍皆為鋼軌樁擋土壁壁後1.1倍樁長之遠,而壁後最大地表沉陷量可利用樁頂水平變位求得。然而在相同的開挖貫入比之下,使用雙排樁擋土系統之樁頂水平變位、壁後最大地表沉陷量與鋼軌樁樁身所產生之彎矩與剪力確實會比單排樁小;因此,使用雙排鋼軌樁將能大幅提升擋土系統之穩定性。研究結果亦指出,當開挖進行時,雙排樁之前後排樁會透過頂繫樑的束制而產生互拉的作用,進而影響彎矩與剪力的分佈;另外,將雙排鋼軌樁擋土系統視為一重力式擋土牆來進行穩定分析為一可行之方法。

English Abstract

ABSTRACT Diaphragm walls are frequently adopted as soil retaining systems for excavation. However, it is inefficient to excavate in a vast area by using horizontal struts and it is not convenient to do the underground construction work afterward. As a consequence, a double-wall retaining system was developed and used for excavation in a good ground condition. In this research, centrifuge modeling tests were adopted to simulate the process of excavation to investigate the effects upon adjacent area in various excavation depths and penetration depths by using a single-rail pile wall or a double-rail pile wall as retaining systems. The results show that the shape of the ground settlement induced by excavation in this study was a triangular one, when a single-rail pile wall or a double-rail pile wall was selected to be the retaining system in sandy layer. The extent of affected area was 1.1 times the pile length behind the wall. Furthermore, the maximum surface settlement can be calculated from the horizontal deformation of the top of pile. Nevertheless, in the same excavation/penetration depth ratio, the horizontal displacement on the top of pile and the maximum surface settlement induced by the single-rail pile wall system were larger than those induced by the double-rail pile wall retaining system. Moreover, the moment and shear force which occurred in the double-rail pile wall system were also less than those in the single-rail pile wall system. Therefore, it would be more stable if the double-rail piles were used as a retaining system. The research also indicated that the front piles and the rear piles would interact with each other during excavation due to the constraint of the cap beam and the distribution of moment and shear force is quite different. According to the research, it may be suitable to assess the stability of the double-rail pile wall system by treating it as a gravity type retaining wall.

Topic Category 工學院 > 土木工程學系
工程學 > 土木與建築工程
  1. [1] 王建智、林宏達、吳明峰,「黏土層深開挖引致之地表沉陷」,地工技術雜誌,第七十六期,第51-62頁(1999)。
  2. [3] 江國輝,「通隧引致鄰近基樁之荷重傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
  3. [8] 陳厚銘,「自承式雙排鋼版樁工法擋土開挖行為探討」,地工技術雜誌,第七十五期,第41-48頁(1999)。
  4. [10] 歐章煜、謝百鉤,「以經驗公式預測台北盆地深開挖引致之地表沉陷」,地工技術雜誌,第五十三期,第5-14頁(1996)。
  5. [12] 歐章煜,深開挖工程分析設計與實務,科技圖書,台北(2002)。
  6. [13] 謝百鉤,「黏土層深開挖引致地盤最大位移預測」,中國土木水利工程學刊,第十三卷,第三期,第489-498頁(2001)。
  7. [14] 謝旭昇、石強、林婷媚,「淺論雙排樁無支撐工法」,地工技術雜誌,第九十七期,第5-14頁(2003)。
  8. [16] Bolton, M. D., and Powrie, W., “The collapse of diaphragm walls retaining clay,” Geotechnique, Vol. 37, No. 3, pp. 335-353 (1987).
  9. [20] Georgiadis, M., Anagnostopoulos, C., and Saflekou, S., “Centrifuge testing of laterally loaded piles in sand,” Canadian Geotechnical Journal, Vol. 29, pp. 208-216 (1992).
  10. [21] Georgiadis, M., and Anagnostopoulos, C., “Displacement of structures adjacent to cantilever sheet pile walls,” Soil and Foundations, Vol. 39, No. 2, pp. 99-104 (1999).
  11. [22] Hashash, Y. M. A., and Whittle, J. A., “Ground movement prediction for deep excavations in soft clay,” Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 6, pp. 474-486 (1996).
  12. [23] Ilyas, T., Leung, C. F., and Budi, S. S., “Centrifuge model study of laterally loaded pile groups in clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 130, No. 3, pp. 274-283 (2004).
  13. [26] Leung, C. F., Chow, Y. K., and Shen, R. F., “Behavior of pile subject to excavation-induced soil movement,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 11, pp. 947-954 (2000).
  14. [28] Leung, C. F., Lim, J. K., Shen, R. F., and Chow, Y. K., “Behavior of pile groups subject to excavation-induced soil movement,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 1, pp. 58-65 (2003).
  15. [31] Nahas, A. EL., and Takemura, J., “External stability of vertical excavations in soft clay with self-supported DMM walls,” Soil and Foundations, Vol. 42, No. 1, pp. 53-69 (2002).
  16. [32] Nip, D. C. N., and Ng, C. W. W., “Back-analysis of laterally loaded bored piles,” Geotechnical Engineering, ICE, Vol. 158, pp. 63-73 (2005).
  17. [33] Ou, C. Y., and Lai, C. H., “Finite-element analysis of deep excavation in layered sandy and clayey soil deposits,” Canadian Geotechnical Journal, Vol. 31, pp. 204-214 (1994).
  18. [35] Powrie, W., “Limit equilibrium analysis of embedded retaining walls,” Geotechnique, Vol. 46, No. 4, pp. 709-723 (1996).
  19. [37] Takemura, J., Kondoh, M., Esaki, T., Kouda, M., and Kusakabe, O., “Centrifuge model tests on double propped wall excavation in soft clay,” Soil and Foundations, Vol. 39, No. 3, pp. 75-87 (1999).
  20. [38] Tsai, J. S., Jou, L. D., and Hsieh, H. S., “A full-scale stability experiment on a diaphragm wall trench,” Canadian Geotechnical Journal, Vol. 37, pp. 379-392 (2000).
  21. 參考文獻
  22. [2] 王凱民,「黏土層中懸臂式擋土壁開挖行為探討」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
  23. [4] 李崇正,林志棟,林俊雄,「大地工程研究者知新工具:離心模型試驗」,岩盤工程研討會論文集,中壢,第649-669頁(1994)。
  24. [5] 林婷媚,「雙排樁無支撐擋土結構壁體變形行為之研究」,碩士論文,國立雲林科技大學營建工程學系,雲林(2003)。
  25. [6] 莊孟翰,「未襯砌隧道壁變形引致地盤下陷分布形態分析」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
  26. [7] 陳思宏,「黏土層中未襯砌隧道之破壞機制」,碩士論文,國立中央大學土木工程學系,中壢(1996)。
  27. [9] 陳志豪,「懸臂式擋土牆開挖之離心模型試驗」,碩士論文,國立中央大學土木工程學系,中壢(2003)。
  28. [11] 歐章煜、謝百鉤、唐雨耕,「深開挖穩定分析與變形分析」,地工技術雜誌,第七十六期,第25-38頁(1999)。
  29. [15] Acutronic, Geotechnical Centrifuge Model 665-1 Product Description 5933H, France (1993).
  30. [17] Briaud, J. L., Nicholson, P., and Lee, J., “Behavior of full-scale VERT wall in sand,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 9, pp. 808-818 (2000).
  31. [18] Clough, G.W., and O’Rourke T. D., “Construction induced movement of insitu walls,” Proceedings Design and performance of earth retainingst structures, ASCE, pp. 439-470 (1990).
  32. [19] Frydman, S., and Baker, R., “Modelling the soil nailing-Excavation process,” centrifuge 94, Rotterdam, pp. 669-674 (1994).
  33. [24] Kimura, T., Takemura, J., Hiro-oka, A., Okamura, M., and Park, J., “Excavation in soft clay using an in-flight excavator,” Centrifuge 94, Rotterdam, pp. 649-654 (1994).
  34. [25] Khan, M. R. A., Takemura, J., Fukushima, H., and Kusakabe, O., “Behavior of double sheet pile wall cofferdam on sand observed in centrifuge tests,” International Journal of Physical Modelling in Geotechnics, IJPMG, Vol. 1, No. 4, pp. 1-16 (2001).
  35. [27] Liu, J., “Centrifugal modeling of multi-braced and unbraced excavation failures,” Physical Modelling in Geotechnics, Canadian, pp. 841-845 (2002).
  36. [29] McNamara, A. M., and Taylor, R. N., “Use of heave reducing piles to control ground movements around excavations,” Physical Modelling in Geotechnics, Canadian, pp. 847-852 (2002).
  37. [30] Madabhushi, S. P., and Chandrasekaran, V. S., “Rotation of cantilever sheet pile walls,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, No. 2, pp. 202-212 (2005).
  38. [34] Peck, R. B., “Deep Excavation and tunneling in soft ground,” Proc. 7th Int. Conf. On Soil Mech. Found. Eng., State of Art Volume, pp. 225-290 (1969).
  39. [36] Poh, T. Y., Goh, A. T. C., and Wong, I. H., “Ground movements associated with wall construction:case histories,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 12, pp. 1061-1069 (2001).
  40. [39] Vermeer, P. A., Punlor, A., and Ruse, N., “Arching effects behind a soldier pile wall,” Computer and Geotechnics, Vol. 28, No. 6, pp. 379-396 (2001).
  41. [40] Zhang, S. D., and Zhang, H. D., “Stability of deep excavations in soft clay,” Centrifuge 94, Rotterdam, pp. 643-648 (1994).
Times Cited
  1. 黃文璽(2006)。自承式雙排鋼軌樁擋土系統穩定性之研究。中央大學土木工程學系學位論文。2006。1-196。